
MODULE – 1

ARM - 32 bit
Microcontroller

ARM MICROCONTROLLER & EMBEDDED SYSTEMS (18EC62)

What is ARM?

• ARM is a 32-bit reduced instruction set computer (RISC)
instruction set architecture (ISA) developed by ARM
Holdings

• It was named the Advanced RISC Machine, and before that,
the Acorn RISC Machine

What is the ARM Cortex-M3 Processor?

• The ARM Cortex-M3 processor, the first of the Cortex
generation of processors released by ARM in 2006, was
primarily designed to target the 32-bit microcontroller
market.

• The Cortex-M3 processor provides excellent performance
at low gate count and comes with many new features
previously available only in high-end processors.

Background of ARM
• ARM was formed in 1990 as Advanced RISC Machines Ltd., a

joint venture of Apple Computer, Acorn Computer Group, and
VLSI Technology.

• In 1991, ARM introduced the ARM6 processor family.
• VLSI became the initial licensee.
• Subsequently, additional companies, including Texas Instruments,

NEC, Sharp, and ST Microelectronics, licensed the ARM processor
designs, extending the applications of ARM processors into
mobile phones, computer hard disks, personal digital assistants
(PDAs), home entertainment systems, and many other consumer
products.

Background of ARM (continued)
• ARM does not manufacture processors or sell the chips directly.
• Instead, ARM licenses the processor designs to business partners, including

a majority of the world’s leading semiconductor companies.

• Based on the ARM low-cost and power-efficient processor designs, these
partners create their processors, microcontrollers, and system-on-chip
solutions.

• This business model is commonly called intellectual property (IP) licensing.

• In addition to processor designs, ARM also licenses systems-level IP and
various software IPs.
• To support these products, ARM has developed a strong base of development

tools, hardware, and software products to enable partners to develop their own
products.

Architecture Versions

• Classic Processors

• ARM Cortex-A Processors

• ARM Cortex-R Processors

• ARM Cortex-M Processors

ARM7

• The Arm7TDMI-S is an excellent workhorse processor
capable of a wide array of applications. Traditionally used
in mobile handsets, the processor is now broadly in many
non-mobile applications.

ARM9
• The Arm9 family includes three processors:

• Arm968E-S is the smallest and lowest-power Arm9 processor,
built with interfaces for Tightly Coupled Memory and aimed at
real-time applications.

• Arm946E-S is a real-time orientated processor with optional
cache interfaces, a full Memory Protection Unit, and Tightly
Coupled Memory.

• Arm926EJ-S is the entry point processor capable of supporting
full Operating Systems including Linux, WindowsCE, and
Symbian.

ARM11
• The Arm11 family includes four processors:

• Arm11MPCore introduced multicore technology and is still used in a
wide range of applications.

• Arm1176JZ(F)-S is the highest-performance single-core processor in
the Classic Arm family. It also introduced TrustZone technology to
enable secure execution outside of the reach of malicious code.

• Arm1156T2(F)-S is the highest-performance processor in the real-time
Classic Arm family.

• Arm1136J(F)-S is very similar to Arm926EJ-S, but includes an extended
pipeline, basic SIMD (Single Instruction Multiple Data) instructions,
and improved frequency and performance.

Development of the ARM Architecture

ARM Cortex Family

ARM Cortex Processors

• Cortex-A Series
• Designed for high-performance open application platforms

• Cortex-R Series
• Designed for high-end embedded systems in which real-time

performance is needed

• Cortex-M Series
• Designed for deeply embedded microcontroller-type systems

A Profile (ARMv7-A)
• Application processors which are designed to handle complex

applications such as high-end embedded operating systems
(OSs) (e.g., Symbian, Linux, and Windows Embedded).

• These processors requiring the highest processing power,
virtual memory system support with memory management
units (MMUs), and, optionally, enhanced Java support and a
secure program execution environment.

• Example products include high-end mobile phones and
electronic wallets for financial transactions.

R Profile (ARMv7-R)

• Real-time, high-performance processors targeted primarily
at the higher end of the real-time market

• Suitable for those applications, such as high-end breaking
systems and hard drive controllers, in which high
processing power and high reliability are essential and for
which low latency is important.

M Profile (ARMv7-M)
• Processors targeting low-cost applications in which processing

efficiency is important and cost, power consumption, low
interrupt latency, and ease of use are critical, as well as
industrial control applications, including real-time control
systems.

• The Cortex processor families are the first products developed
on architecture v7, and the Cortex-M3 processor is based on
one profile of the v7 architecture, called ARM v7-M, an
architecture specification for microcontroller products.

Evolution of ARM Processor Architecture

Evolution of ARM Processor Architecture
(continued)

Instruction Set Development
• Historically (since ARM7TDMI), two different instruction sets

are supported on the ARM processor:

• the ARM instructions that are 32 bits and Thumb instructions
that are 16 bits.

• During program execution, the processor can be dynamically
switched between the ARM state and the Thumb state to use
either one of the instruction sets.

• The Thumb instruction set provides only a subset of the ARM
instructions, but it can provide higher code density.
• It is useful for products with tight memory requirements.

Instruction Set Development (continued)

• As the architecture version has been updated, extra
instructions have been added to both ARM instructions
and Thumb instructions.

• In 2003, ARM announced the Thumb-2 instruction set,
which is a new superset of Thumb instructions that
contains both 16-bit and 32-bit instructions.

The Thumb-2 Technology and Instruction Set
Architecture

• The Thumb-2 technology extended the Thumb Instruction Set
Architecture (ISA) into a highly efficient and powerful
instruction set that delivers significant benefits in terms of ease
of use, code size, and performance.

• The extended instruction set in Thumb-2 is a superset of the
previous 16-bit Thumb instruction set, with additional 16-bit
instructions alongside 32-bit instructions.

• It allows more complex operations to be carried out in the
Thumb state, thus allowing higher efficiency by reducing the
number of states switching between ARM state and Thumb
state.

The Thumb-2 Technology and Instruction Set
Architecture (continued)

The Thumb-2 Technology and Instruction Set
Architecture (continued)

• The Cortex-M3 supports only the Thumb-2 (and traditional
Thumb) instruction set.

• Instead of using ARM instructions for some operations, as
in traditional ARM processors, it uses the Thumb-2
instruction set for all operations.

• As a result, the Cortex-M3 processor is not backward
compatible with traditional ARM processors.

The Thumb-2 Technology and Instruction Set
Architecture (continued)

• With support for both 16-bit and 32-bit instructions in the
Thumb-2 instruction set, there is no need to switch the
processor between Thumb state (16-bit instructions) and ARM
state (32-bit instructions).

• In the Cortex-M3 processor, 32-bit instructions can be mixed
with 16-bit instructions without switching state, getting high
code density and high performance with no extra complexity.

• The Thumb-2 instruction set is a very important feature of the
ARMv7 architecture.

Cortex-M3 Processor Applications
• Low-cost microcontrollers:

• The Cortex-M3 processor is ideally suited for low-cost microcontrollers, which
are commonly used in consumer products, from toys to electrical appliances.

• It is a highly competitive market due to the many well-known 8-bit and 16-bit
microcontroller products on the market.

• Its lower power, high performance, and ease-of-use advantages enable
embedded developers to migrate to 32-bit systems and develop products with
the ARM architecture.

• Automotive:
• The Cortex-M3 processor has very high-performance efficiency and low

interrupt latency, allowing it to be used in real-time systems.
• The Cortex-M3 processor supports up to 240 external vectored interrupts, with

a built-in interrupt controller with nested interrupt supports and an optional
MPU, making it ideal for highly integrated and cost-sensitive automotive
applications.

Cortex-M3 Processor Applications (continued)

• Data communications:
• The processor’s low power and high efficiency, coupled with

instructions in Thumb-2 for bit-field manipulation, make the
Cortex-M3 ideal for many communications applications, such as
Bluetooth and ZigBee.

• Industrial control:
• In industrial control applications, simplicity, fast response, and

reliability are key factors.
• Again, the Cortex-M3 processor’s interrupt feature, low interrupt

latency, and enhanced fault-handling features make it a strong
candidate in this area.

Cortex-M3 Processor Applications (continued)

• Consumer products:
• In many consumer products, a high-performance

microprocessor (or several of them) is used.

• The Cortex-M3 processor, being a small processor, is highly
efficient and low in power and supports an MPU enabling
complex software to execute while providing robust memory
protection

Advantages of Cortex-M3 Processor
• Greater performance efficiency: Allows more work to be done without increasing the

frequency or power requirements

• Low power consumption: Enables longer battery life, especially critical in portable
products

• Enhanced determinism: Guarantees that critical tasks and interrupts are serviced as
quickly as possible and in a known number of cycles

• Improved code density: Ensures that code fits in even the smallest memory footprints

• Ease of use: Provides easier programmability and debugging for the growing number
of 8-bit and 16-bit users migrating to 32 bits

• Lower cost solutions: Reduces 32-bit-based system costs close to those of legacy 8-bit
and 16-bit devices and enabling low-end, 32-bit microcontrollers to be priced at less
than US$1 for the first time

• Wide choice of development tools: From low-cost or free compilers to full-featured
development suites from many development tool vendors

Architecture of ARM Cortex-M3

Architecture of ARM Cortex-M3 (continued)

• The Cortex-M3 is a 32-bit microprocessor.
• It has a 32-bit data path, a 32-bit register bank, and 32-bit memory interfaces.

• The processor has a Harvard architecture, which means that it has a separate
instruction bus and data bus.
• This allows instructions and data accesses to take place at the same time.
• The performance of the processor increases because data accesses do not affect the

instruction pipeline.

• This feature results in multiple bus interfaces on Cortex-M3, each with optimized usage and
the ability to be used simultaneously.

• However, the instruction and data buses share the same memory space (a
unified memory system).
• In other words, you cannot get 8 GB of memory space just because you have separate bus

interfaces.

Architecture of ARM Cortex-M3 (continued)

• For complex applications that require more memory system features, the
Cortex-M3 processor has an optional Memory Protection Unit (MPU), and it is
possible to use an external cache if it’s required.

• Both little endian and big endian memory systems are supported.

• The Cortex-M3 processor includes a number of fixed internal debugging
components.
• These components provide debugging operation supports and features, such as

breakpoints and watchpoints.

• In addition, optional components provide debugging features, such as
instruction trace, and various types of debugging interfaces.

Features of ARM Cortex-M3
• Three-stage pipeline design

• Harvard bus architecture with unified memory space: instructions and data use the
same address space

• 32-bit addressing, supporting 4GB of memory space

• On-chip bus interfaces based on ARM AMBA (Advanced Microcontroller Bus
Architecture) Technology, which allow pipelined bus operations for higher
throughput

• An interrupt controller called NVIC (Nested Vectored Interrupt Controller)
supporting up to 240 interrupt requests and from 8 to 256 interrupt priority levels
(dependent on the actual device implementation)

Features of ARM Cortex-M3 (continued)
• Support for various features for OS (Operating System) implementation such as

a system tick timer, shadowed stack pointer

• Sleep mode support and various low power features

• Support for an optional MPU (Memory Protection Unit) to provide memory
protection features like programmable memory, or access permission control

• Support for bit-data accesses in two specific memory regions using a feature
called Bit Band

• The option of being used in single processor or multi-processor designs

Registers

Registers (continued)
• The Cortex-M3 processor has registers R0 through R15.

• R0–R12: General-Purpose Registers
• R0–R12 are 32-bit general-purpose registers for data operations.

• Some 16-bit Thumb instructions can only access a subset of these registers (low registers,
R0–R7).

• R13: Stack Pointers
• The Cortex-M3 contains two stack pointers (R13).

• They are banked so that only one is visible at a time.

• The two stack pointers are as follows:
• Main Stack Pointer (MSP): The default stack pointer, used by the operating system (OS) kernel and

exception handlers

• Process Stack Pointer (PSP): Used by user application code

• The lowest 2 bits of the stack pointers are always 0, which means they are always word
aligned.

Registers (continued)
• R14: Link Register

• When a subroutine is called, the return address is stored in the link register.

• R15: Program Counter
• The program counter is the current program address.

• This register can be written to control the program flow.

Registers (continued)

• Special Registers
• The Cortex-M3 processor also has a number of special registers.

• They are as follows:
• Program Status registers (PSRs)

• Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)

• Control register (CONTROL)

• These registers have special functions and can be accessed only
by special instructions.

• They cannot be used for normal data processing.

Registers (continued)

Registers
• The Cortex-M3 processor has registers R0 through R15 and a

number of special registers.
• General Purpose Registers R0 through R7

• The R0 through R7 general purpose registers are also called low registers.
• They can be accessed by all 16-bit Thumb instructions and all 32-bit Thumb-2

instructions.
• These registers are all 32 bits.
• The reset value is unpredictable

• General Purpose Registers R8 through R12
• The R8 through R12 registers are also called high registers.
• They are accessible by all Thumb-2 instructions but not by all 16-bit Thumb instructions.
• These registers are all 32 bits
• The reset value is unpredictable.

Registers (continued)
• Stack Pointer R13

• R13 is the stack pointer (SP).
• In the Cortex-M3 processor, there are two SPs.
• This duality allows two separate stack memories to be set up.
• When using the register name R13, we can only access the current SP; the

other one is inaccessible unless we use special instructions MSR and MRS.
• The two SPs are as follows:
• Main Stack Pointer (MSP) or SP_main:

• This is the default SP
• It is used by the operating system (OS) kernel, exception handlers, and all application

codes that require privileged access.

• Process Stack Pointer (PSP) or SP_process:

• This is used by the base-level application code (when not running an exception handler).

Registers (continued)
• Stack Pointer R13 (continued)

• It is not necessary to use both SPs.

• Simple applications can rely purely on the MSP.

• In the Cortex-M3, the instructions for accessing stack memory are PUSH and
POP.

• The assembly language syntax is as follows

• PUSH and POP are usually used to save register contents to stack memory at

the start of a subroutine and then restore the registers from stack at the end
of the subroutine.

Registers (continued)
• Stack Pointer R13 (continued)

• We can PUSH or POP multiple registers in one instruction:

• Instead of using R13, you can use SP in program codes.

• Because register PUSH and POP operations are always word aligned (their
addresses must be 0x0, 0x4, 0x8, ...), the SP/R13 bit 0 and bit 1 are
hardwired to 0 and always read as zero (RAZ).

Registers (continued)
• Link Register R14

• R14 is the link register (LR).

• Inside an assembly program, we can write it as either R14 or LR.

• LR is used to store the return program counter (PC) when a subroutine or
function is called.

• E.g.: when we’re using the branch and link (BL) instruction:

Registers (continued)
• Link Register R14 (continued)

• Despite the fact that bit 0 of the PC is always 0 (because instructions are
word aligned or half word aligned), the LR bit 0 is readable and writable.

• This is because in the Thumb instruction set, bit 0 is often used to indicate
ARM/Thumb states.

• To allow the Thumb-2 program for the Cortex-M3 to work with other ARM
processors that support the Thumb-2 technology, this least significant bit
(LSB) is writable and readable.

Registers (continued)
• Program Counter R15

• R15 is the Program Counter.

• It can be accessed in assembler code by either R15 or PC.

• Because of the pipelined nature of the Cortex-M3 processor, when you read this register,
you will find that the value is different than the location of the executing instruction,
normally by 4.

• For example:

• Because an instruction address must be half word aligned, the LSB (bit 0) of the PC read

value is always 0.

• However, in branching, either by writing to PC or using branch instructions, the LSB of the
target address should be set to 1 because it is used to indicate the Thumb state operations.

• If it is 0, it can imply trying to switch to the ARM state and will result in a fault exception in
the Cortex-M3.

Special Registers
• The special registers in the Cortex-M3 processor include the

following:
• Program Status registers (PSRs)

• Interrupt Mask registers (PRIMASK, FAULTMASK, and BASEPRI)

• Control register (CONTROL)

• Special registers can only be accessed via MSR and MRS
instructions; they do not have memory addresses.

Program Status Registers
• The PSRs are subdivided into three status registers:
• Application Program Status register (APSR)

• Interrupt Program Status register (IPSR)

• Execution Program Status register (EPSR)

• The three PSRs can be accessed together or separately using the
special register access instructions MSR and MRS.

• When they are accessed as a collective item, the name xPSR is
used.

Program Status Registers (continued)
• You can read the PSRs using the MRS instruction.

• You can also change the APSR using the MSR instruction, but EPSR
and IPSR are read-only.

• For example:

Program Status Registers (continued)

Program Status Registers (continued)
• In ARM assembler, when accessing xPSR (all three PSRs as one), the symbol PSR

is used:

• The descriptions for the bit fields in PSR are shown in Table 3.1.

Program Status Registers (continued)
• If you compare this with the Current Program Status register (CPSR) in ARM7, you might find

that some bit fields that were used in ARM7 are gone.
• The Mode (M) bit field is gone because the Cortex-M3 does not have the operation mode as defined

in ARM7.

• Thumb-bit (T) is moved to bit 24.

• Interrupt status (I and F) bits are replaced by the new interrupt mask registers (PRIMASKs), which are
separated from PSR.

• For comparison, the CPSR in traditional ARM processors is shown in Figure 3.5.

Interrupt Mask Registers
• The PRIMASK, FAULTMASK, and BASEPRI registers are used to disable

exceptions.

• The PRIMASK and BASEPRI registers are useful for temporarily disabling
interrupts in timing-critical tasks.

• An OS could use FAULTMASK to temporarily disable fault handling when
a task has crashed.
• In this scenario, a number of different faults might be taking place when a

task crashes.
• Once the core starts cleaning up, it might not want to be interrupted by

other faults caused by the crashed process.
• Therefore, the FAULTMASK gives the OS kernel time to deal with fault

conditions.

Interrupt Mask Registers (continued)

Interrupt Mask Registers (continued)
• To access the PRIMASK, FAULTMASK, and BASEPRI registers, a

number of functions are available in the device driver libraries
provided by the microcontroller vendors.

• For example, the following:

Interrupt Mask Registers (continued)
• In assembly language, the MRS and MSR instructions are used.

• For example:

• The PRIMASK, FAULTMASK, and BASEPRI registers cannot be set in the
user access level.

The Control Register
• The control register is used to define the privilege level and the SP

selection.

• This register has 2 bits, as shown in Table 3.3.

The Control Register (continued)
• CONTROL[1]
• In the Cortex-M3, the CONTROL[1] bit is always 0 in handler mode.

• However, in the thread or base level, it can be either 0 or 1.

• This bit is writable only when the core is in thread mode and
privileged.

• In the user state or handler mode, writing to this bit is not allowed.

• Aside from writing to this register, another way to change this bit is to
change bit 2 of the LR when in exception return.

The Control Register (continued)
• CONTROL[0]

• The CONTROL[0] bit is writable only in a privileged state.

• Once it enters the user state, the only way to switch back to privileged is to
trigger an interrupt and change this in the exception handler.

• To access the control register in C, the following Cortex Microcontroller
Software Interface Standard (CMSIS) functions are available in CMSIS
compliant device driver libraries:

• To access the control register in assembly, the MRS and MSR instructions are

used:

Operation Modes
• The Cortex-M3 processor has two operation modes and two privilege levels.

• The operation modes (thread mode and handler mode) determine whether the
processor is running a normal program or running an exception handler like an
interrupt handler or system exception handler.

• The privilege levels (privileged level and user level) provide a mechanism for
safeguarding memory accesses to critical regions as well as providing a basic security
model.

Operation Modes (continued)

Operation Modes (continued)
• When the processor is running a main program (thread

mode), it can be either in a privileged state or a user state, but
exception handlers can only be in a privileged state.

• When the processor exits reset, it is in thread mode, with
privileged access rights.

• In the privileged state, a program has access to all memory
ranges (except when prohibited by MPU settings) and can use
all supported instructions.

Operation Modes (continued)
• Software in the privileged access level can switch the program into

the user access level using the control register.

• When an exception takes place, the processor will always switch
back to the privileged state and return to the previous state when
exiting the exception handler.

• A user program cannot change back to the privileged state by
writing to the control register.

• It has to go through an exception handler that programs the control
register to switch the processor back into the privileged access level
when returning to thread mode.

Operation Modes (continued)
• The separation of privilege and user levels improves system

reliability by preventing system configuration registers from being
accessed or changed by some untrusted programs.

• If an MPU is available, it can be used in conjunction with privilege
levels to protect critical memory locations, such as programs and
data for OSs.
• For example, with privileged accesses, usually used by the OS kernel,

all memory locations can be accessed (unless prohibited by MPU
setup).

• When the OS launches a user application, it is likely to be executed in
the user access level to protect the system from failing due to a crash
of untrusted user programs.

Operation Modes
• The Cortex-M3 processor supports two modes (thread mode and handler

mode) and two privilege levels (privileged level and user level).

• When the processor is running in thread mode, it can be in either the
privileged or user level, but handlers can only be in the privileged level.

Operation Modes (continued)
• In the user access level (thread mode), access to the system control space

(SCS)—a part of the memory region for configuration registers and debugging
components—is blocked.

• Furthermore, instructions that access special registers (such as MSR, except
when accessing APSR) cannot be used.

• If a program running at the user access level tries to access SCS or special
registers, a fault exception will occur.

Operation Modes (continued)
• Software in a privileged access level can switch the program into the user

access level using the control register.

• When an exception takes place, the processor will always switch to a privileged
state and return to the previous state when exiting the exception handler.

• A user program cannot change back to the privileged state directly by writing
to the control register.
• It has to go through an exception handler that programs the control register to

switch the processor back into privileged access level when returning to thread
mode.

Operation Modes (continued)

Operation Modes (continued)
• In simple applications, there is no need to separate the privileged and user

access levels.
• In these cases, there is no need to use user access level and no need to program

the control register.

Operation Modes (continued)
• The mode and access level of the processor are defined by the control register.

• When the control register bit 0 is 0, the processor mode changes when an
exception takes place.

• When control register bit 0 is 1 (thread running user application), both
processor mode and access level change when an exception takes place.

• Control register bit 0 is programmable only in the privileged level.
• For a user-level program to switch to privileged state, it has to raise an interrupt (for

example, supervisor call [SVC]) and write to CONTROL[0] within the handler.

Nested Vectored Interrupt Controller (NVIC)

• The Cortex-M3 processor includes an interrupt controller called the
Nested Vectored Interrupt Controller (NVIC).

• It is closely coupled to the processor core and provides a number of
features as follows:
• Nested interrupt support

• Vectored interrupt support

• Dynamic priority changes support

• Reduction of interrupt latency

• Interrupt masking

Nested Vectored Interrupt Controller (NVIC)
(continued)

• Nested Interrupt Support
• All the external interrupts and most of the system exceptions can be

programmed to different priority levels.
• When an interrupt occurs, the NVIC compares the priority of this interrupt to

the current running priority level.
• If the priority of the new interrupt is higher than the current level, the

interrupt handler of the new interrupt will override the current running task.

• Vectored Interrupt Support
• When an interrupt is accepted, the starting address of the interrupt service

routine (ISR) is located from a vector table in memory.
• There is no need to use software to determine and branch to the starting

address of the ISR.
• Thus, it takes less time to process the interrupt request.

Nested Vectored Interrupt Controller (NVIC)
(continued)

• Dynamic Priority Changes Support
• Priority levels of interrupts can be changed by software during run

time.
• Interrupts that are being serviced are blocked from further activation

until the ISR is completed, so their priority can be changed without risk
of accidental re-entry.

• Reduction of Interrupt Latency
• The Cortex-M3 processor also includes a number of advanced features

to lower the interrupt latency.
• These include automatic saving and restoring some register contents,

reducing delay in switching from one ISR to another, and handling of
late arrival interrupts.

Nested Vectored Interrupt Controller (NVIC)
(continued)

• Interrupt Masking
• Interrupts and system exceptions can be masked based on their

priority level or masked completely using the interrupt masking
registers BASEPRI, PRIMASK, and FAULTMASK.

• They can be used to ensure that time-critical tasks can be finished on
time without being interrupted.

The Memory Map
• The Cortex-M3 has a predefined memory map.

• This allows the built-in peripherals, such as the interrupt controller and
the debug components, to be accessed by simple memory access
instructions.

• Thus, most system features are accessible in C program code.

• The predefined memory map also allows the Cortex-M3 processor to be
highly optimized for speed and ease of integration in system-on-a-chip
(SoC) designs.

• Overall, the 4 GB memory space can be divided into ranges as shown in
Figure 2.6.

The Memory Map (continued)

The Memory Map (continued)
• The Cortex-M3 design has an internal bus infrastructure optimized for

this memory usage.

• In addition, the design allows these regions to be used differently.

• For example, data memory can still be put into the CODE region, and
program code can be executed from an external Random Access
Memory (RAM) region.

• The system-level memory region contains the interrupt controller and
the debug components.

• By having fixed addresses for these peripherals, you can port
applications between different Cortex-M3 products much more easily.

The Bus Interface
• There are several bus interfaces on the Cortex-M3 processor.

• They allow the Cortex-M3 to carry instruction fetches and data accesses at the
same time.

• The main bus interfaces are as follows:
• Code memory buses
• The code memory region access is carried out on the code memory buses, which physically

consist of two buses, one called I-Code and other called D-Code.
• These are optimized for instruction fetches for best instruction execution speed.

• System bus
• The system bus is used to access memory and peripherals.
• This provides access to the Static Random Access Memory (SRAM), peripherals, external RAM,

external devices, and part of the system-level memory regions.
• Private peripheral bus
• The private peripheral bus provides access to a part of the system-level memory dedicated to

private peripherals, such as debugging components.

The Memory Protection Unit (MPU)
• The Cortex-M3 has an optional MPU.

• This unit allows access rules to be set up for privileged access and user program access.

• When an access rule is violated, a fault exception is generated, and the fault exception handler
will be able to analyse the problem and correct it, if possible.

• The MPU can be used in various ways.

• In common scenarios, the OS can set up the MPU to protect data use by the OS kernel and
other privileged processes to be protected from untrusted user programs.

• The MPU can also be used to make memory regions read-only, to prevent accidental erasing of
data or to isolate memory regions between different tasks in a multitasking system.

• Overall, it can help make embedded systems more robust and reliable.

• The MPU feature is optional and is determined during the implementation stage of the
microcontroller or SoC design.

The Instruction Set
• The Cortex-M3 supports the Thumb-2 instruction set.

• It allows 32-bit instructions and 16-bit instructions to be used together for high
code density and high efficiency.

• It is flexible and powerful yet easy to use.

• In previous ARM processors, the central processing unit (CPU) had two
operation states – a 32-bit ARM state and a 16-bit Thumb state.
• In the ARM state, the instructions are 32 bits and can execute all supported

instructions with very high performance.

• In the Thumb state, the instructions are 16 bits, so there is a much higher
instruction code density
• The Thumb state does not have all the functionality of ARM instructions and may require more

instructions to complete certain types of operations.

The Instruction Set (continued)
• Many applications have mixed ARM and Thumb codes.

• However, there is overhead (in terms of both execution time and instruction space)
to switch between the states, and ARM and Thumb codes might need to be
compiled separately in different files.

• This increases the complexity of software development and reduces maximum
efficiency of the CPU core.

• With the introduction of the Thumb-2 instruction set, it is now possible to
handle all processing requirements in one operation state.
• There is no need to switch between the two.

• In fact, the Cortex-M3 does not support the ARM code.

• Even interrupts are now handled with the Thumb state.

The Instruction Set (continued)

The Instruction Set (continued)
• Since there is no need to switch between states, the Cortex-M3

processor has a number of advantages over traditional ARM
processors, such as:
• No state switching overhead, saving both execution time and instruction

space

• No need to separate ARM code and Thumb code source files, making
software development and maintenance easier

• It’s easier to get the best efficiency and performance, in turn making it
easier to write software, because there is no need to worry about switching
code between ARM and Thumb to try to get the best density/performance

The Instruction Set (continued)
• The Cortex-M3 processor has a number of interesting and powerful

instructions. Here are a few examples:
• UFBX, BFI, and BFC: Bit field extract, insert, and clear instructions

• UDIV and SDIV: Unsigned and signed divide instructions

• WFE, WFI, and SEV: Wait-For-Event, Wait-For-Interrupts, and Send-Event;
these allow the processor to enter sleep mode and to handle task
synchronization on multiprocessor systems

• MSR and MRS: Move to special register from general-purpose register and
move special register to general-purpose register; for access to the special
registers

Interrupts and Exceptions
• The Cortex-M3 processor implements a new exception model, introduced in the

ARMv7-M architecture.
• Enables very efficient exception handling.

• It has a number of system exceptions plus a number of external Interrupt Request
(IRQs) (external interrupt inputs).

• Interrupt priority handling and nested interrupt support are now included in the
interrupt architecture.

• The interrupt features in the Cortex-M3 are implemented in the NVIC.

• Aside from supporting external interrupts, the Cortex-M3 also supports a number of
internal exception sources, such as system fault handling.

• As a result, the Cortex-M3 has a number of predefined exception types, as shown in
Table 2.2.

Interrupts and Exceptions

Exceptions and Interrupts
• The Cortex-M3 supports a number of exceptions, including a fixed number of

system exceptions and a number of interrupts, commonly called IRQ.

• The number of interrupt inputs on a Cortex-M3 microcontroller depends on
the individual design.
• The typical number of interrupt inputs is 16 or 32.

• Besides the interrupt inputs, there is also a nonmaskable interrupt (NMI) input
signal.
• In most cases, the NMI could be connected to a watchdog timer or a voltage-

monitoring block that warns the processor when the voltage drops below a certain
level.

• The NMI exception can be activated any time, even right after the core exits reset.

Vector Tables
• When an exception event takes place on the Cortex-M3 and is accepted by the

processor core, the corresponding exception handler is executed.

• To determine the starting address of the exception handler, a vector table
mechanism is used.

• The vector table is an array of word data inside the system memory, each
representing the starting address of one exception type.

• The vector table is relocatable, and the relocation is controlled by a relocation
register in the NVIC (see Table 3.5).

• After reset, this relocation control register is reset to 0; therefore, the vector
table is located in address 0x0 after reset.

Vector Tables (continued)

Vector Tables (continued)
• For example, if the reset is exception type 1, the address of the reset vector is 1

times 4 (each word is 4 bytes), which equals 0x00000004, and NMI vector (type
2) is located in 2 × 4 = 0x00000008.

• The address 0x00000000 is used to store the starting value for the MSP.

• The LSB of each exception vector indicates whether the exception is to be
executed in the Thumb state.

• Because the Cortex-M3 can support only Thumb instructions, the LSB of all the
exception vectors should be set to 1.

Low Power and High Energy Efficiency
• The Cortex-M3 processor is designed with various features to allow designers to

develop low power and high energy efficient products.
• It has sleep mode and deep sleep mode supports, which can work with various system-

design methodologies to reduce power consumption during idle period.

• Its low gate count and design techniques reduce circuit activities in the processor to allow
active power to be reduced.

• It has high code density and hence it has lowered the program size requirement.

• It allows processing tasks to be completed in a short time, so that the processor can return
to sleep modes as soon as possible to cut down energy use.

• Starting from Cortex-M3 revision 2, a new feature called Wakeup Interrupt Controller
(WIC) is available.
• This feature allows the whole processor core to be powered down, while processor states

are retained and the processor can be returned to active state almost immediately when an
interrupt takes place.

• This makes the Cortex-M3 even more suitable for many ultra-low power applications

Debugging Support
• The Cortex-M3 processor includes a number of debugging features, such as

program execution controls, including halting and stepping, instruction
breakpoints, data watchpoints, registers and memory accesses, profiling, and
traces.

• The debugging hardware of the Cortex-M3 processor is based on the CoreSight
architecture.
• Unlike traditional ARM processors, the CPU core itself does not have a Joint Test

Action Group (JTAG) interface.

• Instead, a debug interface module is decoupled from the core, and a bus interface
called the Debug Access Port (DAP) is provided at the core level.

• Through this bus interface, external debuggers can access control registers to debug
hardware as well as system memory, even when the processor is running.

Debugging Support (continued)
• The control of DAP bus interface is carried out by a Debug Port (DP) device.

• The DPs currently available are the Serial-Wire JTAG Debug Port (SWJ-DP)
(supports the traditional JTAG protocol as well as the Serial-Wire protocol) or
the SW-DP (supports the Serial-Wire protocol only).

• A JTAG-DP module from the ARM CoreSight product family can also be used.

• Chip manufacturers can choose to attach one of these DP modules to provide
the debug interface.

• Chip manufacturers can also include an Embedded Trace Macrocell (ETM) to
allow instruction trace.
• Trace information is output via the Trace Port Interface Unit (TPIU), and the debug

host (usually a Personal Computer [PC]) can then collect the executed instruction
information via external trace-capturing hardware.

Debugging Support (continued)
• Within the Cortex-M3 processor, a number of events can be used to trigger

debug actions.
• Debug events can be breakpoints, watchpoints, fault conditions, or external

debugging request input signals.

• When a debug event takes place, the Cortex-M3 processor can either enter
halt mode or execute the debug monitor exception handler.

• The data watchpoint function is provided by a Data Watchpoint and Trace
(DWT) unit in the Cortex-M3 processor.
• This can be used to stop the processor (or trigger the debug monitor exception

routine) or to generate data trace information.

• When data trace is used, the traced data can be output via the TPIU.

Debugging Support (continued)
• In addition to these basic debugging features, the Cortex-M3 processor also

provides a Flash Patch and Breakpoint (FPB) unit that can provide a simple
breakpoint function or remap an instruction access from Flash to a different
location in SRAM.

• An Instrumentation Trace Macrocell (ITM) provides a new way for developers
to output data to a debugger.
• By writing data to register memory in the ITM, a debugger can collect the

data via a trace interface and display or process them.

• This method is easy to use and faster than JTAG output.

• All these debugging components are controlled via the DAP interface bus on
the Cortex-M3 or by a program running on the processor core, and all trace
information is accessible from the TPIU.

Characteristics Summary
• High Performance

• The Cortex-M3 processor delivers high performance in microcontroller
products:

• Many instructions are single cycle

• Separate data and instruction buses

• No state switching overhead

• The Thumb-2 instruction set provides extra flexibility in programming

• Instruction fetches are 32 bits

• Operate at high clock frequency (over 100 MHz)

Characteristics Summary (continued)
• Advanced Interrupt-Handling Features

• The interrupt features on the Cortex-M3 processor are easy to use, very
flexible, and provide high interrupt processing throughput:

• The built-in NVIC supports up to 240 external interrupt inputs

• It reduces the interrupt handling latency

• Interrupt arrangement is extremely flexible

• A minimum of eight levels of priority are supported, and the priority can be
changed dynamically.

• Some of the multicycle operations are now interruptible

• Immediate execution of the NMI handler is guaranteed on receipt of NMI
request

Characteristics Summary (continued)
• Low Power Consumption

• The Cortex-M3 processor is suitable for various low-power applications:

• Suitable for low-power designs because of the low gate count.

• It has power-saving mode support (SLEEPING and SLEEPDEEP).

• The processor can enter sleep mode using WFI or WFE instructions.

• The design has separated clocks for essential blocks, so clocking circuits
for most parts of the processor can be stopped during sleep.

• The fully static, synchronous, synthesizable design makes the processor
easy to be manufactured using any low power or standard semiconductor
process technology.

Characteristics Summary (continued)
• System Features

• The Cortex-M3 processor provides various system features making it suitable
for a large number of applications::

• The system provides bit-band operation, byte-invariant big endian mode,
and unaligned data access support.

• Advanced fault-handling features include various exception types and fault
status registers, making it easier to locate problems.

• With the shadowed stack pointer, stack memory of kernel and user
processes can be isolated.

• With the optional MPU, the processor is more than sufficient to develop
robust software and reliable products.

Characteristics Summary (continued)
• Debug Supports

• The Cortex-M3 processor includes comprehensive debug features to help software
developers design their products:

• Supports JTAG or Serial-Wire debug interfaces

• Based on the CoreSight debugging solution, processor status or memory contents
can be accessed even when the core is running

• Built-in support for six breakpoints and four watchpoints

• Optional ETM for instruction trace and data trace using DWT

• New debugging features, including fault status registers, new fault exceptions, and
Flash Patch operations, make debugging much easier

• ITM provides an easy-to-use method to output debug information from test code

• PC sampler and counters inside the DWT provide code-profiling information

Stack Memory Operations
• In the Cortex-M3, besides normal software-controlled stack PUSH and POP, the

stack PUSH and POP operations are also carried out automatically when
entering or exiting an exception/interrupt handler.

Basic Operations of the Stack
• In general, stack operations are memory write or read operations, with the address

specified by an SP.

• Data in registers is saved into stack memory by a PUSH operation and can be restored
to registers later by a POP operation.

• The SP is adjusted automatically in PUSH and POP so that multiple data PUSH will not
cause old stacked data to be erased.

• The function of the stack is to store register contents in memory so that they can be
restored later, after a processing task is completed.

• For normal uses, for each store (PUSH), there must be a corresponding read (POP),
and the address of the POP operation should match that of the PUSH operation.

• When PUSH/POP instructions are used, the SP is incremented/decremented
automatically.

Basic Operations of the Stack (continued)

Basic Operations of the Stack (continued)
• When program control returns to the main program, the R0 – R2 contents are

the same as before.

• Notice the order of PUSH and POP: The POP order must be the reverse of
PUSH.

• These operations can be simplified, thanks to PUSH and POP instructions
allowing multiple load and store.

• In this case, the ordering of a register POP is automatically reversed by the
processor.

Basic Operations of the Stack (continued)

Basic Operations of the Stack (continued)
• We can also combine RETURN with a POP operation.

• This is done by pushing the LR to the stack and popping it back to PC at the end of
the subroutine.

Cortex-M3 Stack Implementation
• The Cortex-M3 uses a full-descending stack operation model.

• The SP points to the last data pushed to the stack memory, and the SP
decrements before a new PUSH operation.

• Figure 3.14 shows execution of the instruction PUSH {R0}.

Cortex-M3 Stack Implementation (continued)

• For POP operations, the data is read from the memory location pointed by SP,
and then, the SP is incremented.

• The contents in the memory location are unchanged but will be overwritten
when the next PUSH operation takes place.

Cortex-M3 Stack Implementation (continued)

• Because each PUSH/POP operation transfers 4 bytes of data (each
register contains 1 word, or 4 bytes), the SP decrements/increments by 4
at a time or a multiple of 4 if more than 1 register is pushed or popped.

• In the Cortex-M3, R13 is defined as the SP. When an interrupt takes
place, a number of registers will be pushed automatically, and R13 will
be used as the SP for this stacking process.

• Similarly, the pushed registers will be restored/popped automatically
when exiting an interrupt handler, and the SP will also be adjusted.

The Two-Stack Model in the Cortex-M3
• The Cortex-M3 has two SPs: the MSP and the PSP.

• The SP register to be used is controlled by the control register bit 1
(CONTROL[1]).

• When CONTROL[1] is 0, the MSP is used for both thread mode and
handler mode.
• In this arrangement, the main program and the exception handlers share the

same stack memory region.

• This is the default setting after power-up.

The Two-Stack Model in the Cortex-M3
(continued)

The Two-Stack Model in the Cortex-M3
(continued)

• When the CONTROL[1] is 1, the PSP is used in thread mode.
• In this arrangement, the main program and the exception handler can have

separate stack memory regions.

• This can prevent a stack error in a user application from damaging the stack
used by the OS.

• The automatic stacking and unstacking mechanism will use PSP, whereas
stack operations inside the handler will use MSP.

The Two-Stack Model in the Cortex-M3
(continued)

The Two-Stack Model in the Cortex-M3
(continued)

• It is possible to perform read/write operations directly to the MSP
and PSP, without any confusion of which R13 you are referring to.

• Provided that you are in privileged level, you can access MSP and
PSP values:

• In general, it is not recommended to change current selected SP values in a C
function, as the stack memory could be used for storing local variables.

The Two-Stack Model in the Cortex-M3
(continued)

• To access the SPs in assembly, you can use the MRS and MSR
instructions:

• By reading the PSP value using an MRS instruction, the OS can read data
stacked by the user application (such as register contents before SVC).

• In addition, the OS can change the PSP pointer value—for example, during
context switching in multitasking systems.

Reset Sequence
• After the processor exits reset, it will read two words from memory
• Address 0x00000000: Starting value of R13 (the SP)

• Address 0x00000004: Reset vector (the starting address of program
execution; LSB should be set to 1 to indicate Thumb state)

Reset Sequence (continued)
• Because the stack operation in the Cortex-M3 is a full descending

stack (SP decrement before store), the initial SP value should be set
to the first memory after the top of the stack region.

• For example, if you have a stack memory range from 0x20007C00
to 0x20007FFF (1 KB), the initial stack value should be set to
0x20008000.

Reset Sequence (continued)
• The vector table starts after the initial SP value.

• The first vector is the reset vector.

• In the Cortex-M3, vector addresses in the vector table should have their
LSB set to 1 to indicate that they are Thumb code.

• For that reason, the previous example has 0x101 in the reset vector,
whereas the boot code starts at address 0x100 (see Figure 3.19).

• After the reset vector is fetched, the Cortex-M3 can then start to execute
the program from the reset vector address and begin normal operations.

• It is necessary to have the SP initialized, because some of the exceptions
(such as NMI) can happen right after reset, and the stack memory could
be required for the handler of those exceptions.

References
1. Joseph Yiu, “The Definitive Guide to the ARM Cortex-M3”, 2nd Edition,

Newnes (Elsevier), 2010.

2. https://www.arm.com

http://www.arm.com/
http://www.arm.com/

Memory Mapping, Bit-Band
Operations and CMSIS

ARM MICROCONTROLLER &
EMBEDDED SYSTEMS (18EC62)

MODULE – 2

Memory System Features Overview
• The Cortex-M3 processor has different memory architecture from that of traditional

ARM processors.

• First, it has a predefined memory map that specifies which bus interface is to be used
when a memory location is accessed.
• This feature also allows the processor design to optimize the access behavior when different

devices are accessed.

• Another feature of the memory system in the Cortex-M3 is the bit-band support.
• This provides atomic operations to bit data in memory or peripherals.
• The bit-band operations are supported only in special memory regions.

• The Cortex-M3 memory system also supports unaligned transfers and exclusive
accesses.
• These features are part of the v7-M architecture.

• Finally, the Cortex-M3 supports both little endian and big endian memory
configuration.

Memory Maps
• The Cortex-M3 processor has a fixed memory map.

• This makes it easier to port software from one Cortex-M3 product to another.

• For example, components described in previous sections, such as Nested
Vectored Interrupt Controller (NVIC) and Memory Protection Unit (MPU), have
the same memory locations in all Cortex-M3 products.

• Nevertheless, the memory map definition allows great flexibility so that
manufacturers can differentiate their Cortex-M3-based product from others.

• Some of the memory locations are allocated for private peripherals such as
debugging components.
• They are located in the private peripheral memory region.

Memory Maps (continued)
• The Cortex-M3 processor has a total of 4 GB of address space.

• Program code can be located in the code region, the Static Random Access
Memory (SRAM) region, or the external RAM region.

• However, it is best to put the program code in the code region because with
this arrangement, the instruction fetches and data accesses are carried out
simultaneously on two separate bus interfaces.

Memory Maps (continued)
• The SRAM memory range is for connecting internal SRAM.

• Access to this region is carried out via the system interface bus.

• In this region, a 32-MB range is defined as a bit-band alias.

• Within the 32-bit-band alias memory range, each word address represents a single bit
in the 1-MB bit-band region.

• A data write access to this bit-band alias memory range will be converted to an atomic
READ-MODIFY-WRITE operation to the bit-band region so as to allow a program to set
or clear individual data bits in the memory.

• The bit-band operation applies only to data accesses not instruction fetches.

• By putting Boolean information (single bits) in the bit-band region, we can pack
multiple Boolean data in a single word while still allowing them to be accessible
individually via bit-band alias, thus saving memory space without the need for
handling READ-MODIFY-WRITE in software.

Memory Maps (continued)
• Another 0.5-GB block of address range is allocated to on-chip

peripherals.

• Similar to the SRAM region, this region supports bit-band alias and
is accessed via the system bus interface.

• However, instruction execution in this region is not allowed.

• The bit-band support in the peripheral region makes it easy to
access or change control and status bits of peripherals, making it
easier to program peripheral control.

Memory Maps (continued)
• Two slots of 1-GB memory space are allocated for external RAM

and external devices.

• The difference between the two is that program execution in the
external device region is not allowed, and there are some
differences with the caching behaviors.

Memory Maps (continued)
• The last 0.5-GB memory is for the system-level components,

internal peripheral buses, external peripheral bus, and vendor-
specific system peripherals.

• There are two segments of the private peripheral bus (PPB):
• Advanced High-Performance Bus (AHB) PPB, for Cortex-M3 internal AHB

peripherals only
• This includes NVIC, FPB, DWT, and ITM

• Advance Peripheral Bus (APB) PPB, for Cortex-M3 internal APB devices as
well as external peripherals (external to the Cortex-M3 processor)
• The Cortex-M3 allows chip vendors to add additional on-chip APB peripherals on this

private peripheral bus via an APB interface

Memory Maps (continued)
• The NVIC is located in a memory region called the system control

space (SCS).

• Besides providing interrupt control features, this region also
provides the control registers for SYSTICK, MPU, and code
debugging control.

Memory Maps (continued)
• The remaining unused vendor-specific memory range can be

accessed via the system bus interface.
• However, instruction execution in this region is not allowed.

• The Cortex-M3 processor also comes with an optional MPU.
• Chip manufacturers can decide whether to include the MPU in their

products.

Memory Access Attributes
• The memory map shows what is included in each memory region.

• Aside from decoding which memory block or device is accessed, the memory
map also defines the memory attributes of the access.

• The memory attributes you can find in the Cortex-M3 processor include the
following:
• Bufferable: Write to memory can be carried out by a write buffer while the

processor continues on next instruction execution.

• Cacheable: Data obtained from memory read can be copied to a memory cache so
that next time it is accessed the value can be obtained from the cache to speed up
the program execution.

• Executable: The processor can fetch and execute program code from this memory
region.

• Sharable: Data in this memory region could be shared by multiple bus masters.
Memory system needs to ensure coherency of data between different bus masters
in shareable memory region.

Memory Access Attributes
(continued)

• The memory access attributes for each memory region are as follows:
• Code memory region (0x00000000–0x1FFFFFFF): This region is executable, and the

cache attribute is write through (WT). You can put data memory in this region as
well. If data operations are carried out for this region, they will take place via the
data bus interface. Write transfers to this region are bufferable.

• SRAM memory region (0x20000000–0x3FFFFFFF): This region is intended for on-
chip RAM. Write transfers to this region are bufferable, and the cache attribute is
write back, write allocated (WB-WA). This region is executable, so you can copy
program code here and execute it.

• Peripheral region (0x40000000–0x5FFFFFFF): This region is intended for peripherals.
The accesses are noncacheable. You cannot execute instruction code in this region
(Execute Never, or XN in ARM documentation, such as the Cortex-M3 TRM).

Memory Access Attributes
(continued)

• External RAM region (0x60000000–0x7FFFFFFF): This region is intended for
either on-chip or off-chip memory. The accesses are cacheable (WB-WA), and
you can execute code in this region.

• External RAM region (0x80000000–0x9FFFFFFF): This region is intended for
either on-chip or off-chip memory. The accesses are cacheable (WT), and you
can execute code in this region.

• External devices (0xA0000000–0xBFFFFFFF): This region is intended for external
devices and/or shared memory that needs ordering/nonbuffered accesses. It is
also a nonexecutable region.

• External devices (0xC0000000–0xDFFFFFFF): This region is intended for external
devices and/or shared memory that needs ordering/nonbuffered accesses. It is
also a nonexecutable region.

• System region (0xE0000000–0xFFFFFFFF): This region is for private peripherals
and vendor-specific devices. It is nonexecutable. For the PPB memory range,
the accesses are strongly ordered (noncacheable, nonbufferable). For the
vendor-specific memory region, the accesses are bufferable and noncacheable.

Default Memory Access
Permissions

• The Cortex-M3 memory map has a default configuration for
memory access permissions.

• This prevents user programs (non-privileged) from accessing system
control memory spaces such as the NVIC.

• The default memory access permission is used when either no MPU
is present or MPU is present but disabled.

• If MPU is present and enabled, the access permission in the MPU
setup will determine whether user accesses are allowed.

Bit-Band Operations

• access (read/write) to a single data bit.

• In the Cortex-M3, this is supported in two predefined memory
regions called bit-band regions.

• One of them is located in the first 1 MB of the SRAM region,
and the other is located in the first 1 MB of the peripheral
region.

• These two memory regions can be accessed like normal
memory, but they can also be accessed via a separate memory
region called the bit- band alias.

• When the bit-band alias address is used, each individual bit can
be accessed separately in the least significant bit (LSB) of each
word-aligned address.

• Bit-band operation support allows a single load/store operation to

Bit-Band Operations (continued)

Bit-Band Operations (continued)
• For example, to set bit 2 in word data in address 0x20000000,

instead of using three instructions to read the data, set the bit, and
then write back the result, this task can be carried out by a single
instruction (see Figure 5.4).

• The assembler sequence for these two cases could be like the one
shown in Figure 5.5.

Bit-Band Operations (continued)

Bit-Band Operations (continued)

Bit-Band Operations (continued)
• Similarly, bit-band support can simplify application code if we need

to read a bit in a memory location.

• For example, if we need to determine bit 2 of address 0x20000000,
we use the steps outlined in Figure 5.6.

• The assembler sequence for these two cases could be like the one
shown in Figure 5.7.

Bit-Band Operations (continued)

Bit-Band Operations (continued)

Bit-Band Operations (continued)
• The Cortex-M3 uses the following terms for the bit-band memory

addresses:
• Bit-band region: This is a memory address region that supports bit-

band operation.
• Bit-band alias: Access to the bit-band alias will cause an access (a bit-

band operation) to the bit-band region.
• Note: A memory remapping is performed.

Bit-Band Operations (continued)
• Within the bit-band region, each word is represented by an LSB of 32

words in the bit-band alias address range.

• What actually happens is that when the bit-band alias address is
accessed, the address is remapped into a bit-band address.

• For read operations, the word is read and the chosen bit location is
shifted to the LSB of the read return data.

• For write operations, the written bit data are shifted to the required bit
position, and a READ-MODIFY-WRITE is performed.

• There are two regions of memory for bit-band operations:
• 0x20000000–0x200FFFFF (SRAM, 1 MB)
• 0x40000000–0x400FFFFF (peripherals, 1 MB)

Bit-Band Operations (continued)
• For the SRAM memory region, the remapping of the bit-band alias

is shown in Table 5.2.

Bit-Band Operations (continued)
• Similarly, the bit-band region of the peripheral memory region can

be accessed via bit-band aliased addresses, as shown in Table 5.3.

Bit-Band Operations (continued)
• Here’s a simple example:

1. Set address 0x20000000 to a value of 0x3355AACC.

2. Read address 0x22000008. This read access is remapped into read
access to 0x20000000. The return value is 1 (bit[2] of 0x3355AACC).

3. Write 0x0 to 0x22000008. This write access is remapped into a READ-
MODIFY-WRITE to 0x20000000. The value 0x3355AACC is read from
memory, bit 2 is cleared, and a result of 0x3355AAC8 is written back
to address 0x20000000.

4. Now, read 0x20000000. That gives you a return value of 0x3355AAC8
(bit[2] cleared).

CMSIS
• The Cortex-M3 microcontrollers are gaining momentum in the embedded

application market, as more and more products based on the Cortex-M3
processor and software that support the Cortex-M3 processor are
emerging.

• There are also a number of companies providing embedded software
solutions, including codecs, data processing libraries, and various software
and debug solutions.

• The CMSIS was developed by ARM to allow users of the Cortex-M3
microcontrollers to gain the most benefit from all these software solutions
and to allow them to develop their embedded application quickly and
reliably.

CMSIS (continued)
• The Cortex Microcontroller Software Interface Standard (CMSIS)

was started in 2008 to improve software usability and inter-
operability of ARM microcontroller software.

• It is integrated into the driver libraries provided by silicon vendors,
providing a standardized software interface for the Cortex-M3
processor features, as well as a number of common system and I/O
functions.

• The library is also supported by software companies including
embedded OS vendors and compiler vendors.

CMSIS (continued)

CMSIS (continued)
• The aims of CMSIS are to:
• improve software portability and reusability

• enable software solution suppliers to develop products that can
work seamlessly with device libraries from various silicon vendors

• allow embedded developers to develop software quicker with an
easy-to-use and standardized software interface

• allow embedded software to be used on multiple compiler
products

• avoid device driver compatibility issues when using software
solutions from multiple sources

CMSIS – Areas of Standardization
• The scope of CMSIS involves standardization in the following areas:

• Hardware Abstraction Layer (HAL) for Cortex-M processor registers: This includes
standardized register definitions for NVIC, System Control Block registers, SYSTICK
register, MPU registers, and a number of NVIC and core feature access functions.

• Standardized system exception names: This allows OS and middleware to use
system exceptions easily without compatibility issues.

• Standardized method of header file organization: This makes it easier for users to
learn new Cortex microcontroller products and improve software portability.

• Common method for system initialization: Each Microcontroller Unit (MCU) vendor
provides a SystemInit() function in their device driver library for essential setup and
configuration, such as initialization of clocks.

• Again, this helps new users to start to use Cortex-M microcontrollers and aids
software portability.

CMSIS – Areas of Standardization
(continued)

• Standardized intrinsic functions: Intrinsic functions are normally used to produce
instructions that cannot be generated by IEC/ISO C.

• By having standardized intrinsic functions, software reusability and portability are
considerably improved.

• Common access functions for communication: This provides a set of software
interface functions for common communication interfaces including universal
asynchronous receiver/transmitter (UART), Ethernet, and Serial Peripheral Interface
(SPI).
• By having these common access functions in the device driver library, reusability

and portability of embedded software are improved.
• Standardized way for embedded software to determine system clock frequency: A

software variable called SystemFrequency is defined in device driver code.
• This allows embedded OS to set up the SYSTICK unit based on the system clock

frequency.

Organization of CMSIS

40

Organization of CMSIS (continued)
• The CMSIS is divided into multiple layers as follows:

• Core Peripheral Access Layer

• Name definitions, address definitions, and helper functions to access core registers
and core peripherals

• Middleware Access Layer

• Common method to access peripherals for the software industry

• Targeted communication interfaces include Ethernet, UART, and SPI.

• Allows portable software to perform communication tasks on any Cortex
microcontrollers that support the required communication interface

Organization of CMSIS (continued)
• Device Peripheral Access Layer (MCU specific)

• Name definitions, address definitions, and driver code to access peripherals

• Access Functions for Peripherals (MCU specific)

• Optional additional helper functions for peripherals

• The role of these layers is summarized in Figure 10.7.

Organization of CMSIS (continued)
• Device Peripheral Access Layer (MCU specific)

• Name definitions, address definitions, and driver code to access peripherals

• Access Functions for Peripherals (MCU specific)

• Optional additional helper functions for peripherals

• The role of these layers is summarized in Figure 10.7.

Advanced Microcontroller Bus Architecture
(AMBA)

• The Advanced Microcontroller Bus Architecture (AMBA) specification defines

an on-chip communications standard for high-performance embedded

microcontrollers.

• Three distinct buses are defined within the AMBA specification :

• Advanced High-performance Bus (AHB)

• Advanced System Bus (ASB)

• Advanced Peripheral Bus (APB)

• A test methodology is included with the AMBA specification which provides an

infrastructure for modular macrocell test and diagnostic access.

Advanced High-performance Bus (AHB)
• The AMBA AHB is for high-performance, high clock frequency system

modules.

• The AHB acts as the high-performance system backbone bus.

• AHB supports the efficient connection of processors, on-chip memories

and off-chip external memory interfaces with low-power peripheral

macrocell functions.

• AHB is also specified to ensure ease of use in an efficient design flow

using synthesis and automated test techniques.

Advanced System Bus (ASB)
• The AMBA ASB is for high-performance system modules.

• AMBA ASB is an alternative system bus suitable for use where the high-

performance features of AHB are not required.

• ASB also supports the efficient connection of processors, on-chip

memories and off-chip external memory interfaces with low-power

Peripheral macrocell functions.

Advanced Peripheral Bus (APB)
• The AMBA APB is for low-power peripherals.

• AMBA APB is optimized for minimal power consumption and reduced

interface complexity to support peripheral functions.

• APB can be used in conjunction with either version of the system bus.

Bus Interfaces on the Cortex-M3
• The bus interfaces on the Cortex-M3 processor are based on AHB-Lite

and APB protocols.

• These are as follows:

• The I-Code Bus

• The D-Code Bus

• The System Bus

• The External PPB

The I-Code Bus
• The I-Code bus is a 32-bit bus based on the AHB-Lite bus protocol for

instruction fetches in memory regions from 0x00000000 to 0x1FFFFFFF.

• Instruction fetches are performed in word size, even for 16-bit Thumb

instructions.

• Therefore, during execution, the CPU core could fetch up to two Thumb

instructions at a time.

The D-Code Bus
• The D-Code bus is a 32-bit bus based on the AHB-Lite bus protocol; it is

used for data access in memory regions from 0x00000000 to 0x1FFFFFFF.

• Although the Cortex-M3 processor supports unaligned transfers, you

won’t get any unaligned transfer on this bus, because the bus interface

on the processor core converts the unaligned transfers into aligned

transfers for you.

• Therefore, devices (such as memory) that attach to this bus need only

support AHB-Lite (AMBA 2.0) aligned transfers.

The System Bus
• The system bus is a 32-bit bus based on the AHB-Lite bus protocol; it is

used for instruction fetch and data access in memory regions from

0x20000000 to 0xDFFFFFFF and 0xE0100000 to 0xFFFFFFFF.

• Similar to the D-Code bus, all the transfers on the system bus are

aligned.

The External PPB
• The External PPB is a 32-bit bus based on the APB bus protocol.

• This is intended for private peripheral accesses in memory regions

0xE0040000 to 0xE00FFFFF.

• However, since some part of this APB memory is already used for TPIU,

ETM, and the ROM table, the memory region that can be used for

attaching extra peripherals on this bus is only 0xE0042000 to

0xE00FF000.

• Transfers on this bus are word aligned.

References
1. Joseph Yiu, “The Definitive Guide to the ARM Cortex-M3”, 2nd Edition,

Newnes (Elsevier), 2010.

2. https://www.arm.com

https://www.arm.com/

MODULE – 3

Embedded System
Components

ARM MICROCONTROLLER & EMBEDDED SYSTEMS (18EC62)

Introduction

What is an Embedded System?
• An embedded system is an electronic/electro-mechanical

system designed to perform a specific function and is a
combination of both hardware and firmware (software).

• Every embedded system is unique and the hardware as
well as the firmware is highly specialised to the application
domain.

Embedded Systems vs. General
Computing Systems
• The computing revolution began with the general purpose

computing requirements. Later it was realised that the
general computing requirements are not sufficient for the
embedded computing requirements.

• The embedded computing requirements demand
‘something special’ in terms of response to stimuli,
meeting the computational deadlines, power efficiency,
limited memory capability, etc.

General Purpose Computing System Embedded System

A system which is a combination of a generic hardware
and a General Purpose Operating System for executing a
variety of applications

A system which is a combination of special purpose
hardware and embedded OS for executing a specific set of
applications

Contains a General Purpose Operating System (GPOS) May or may not contain an operating system for
functioning

Applications are alterable (programmable) by the user (It
is possible for the end user to re-install the operating
system, and also add or remove user applications)

The firmware of the embedded system is pre-programmed
and it is non-alterable by the end-user (There may be
exceptions for system supporting OS kernel image flashing
through special hardware settings)

Performance is the key deciding factor in the selection of
the system. Always, ‘Faster is Better’

Application-specific requirements (like performance,
power requirements, memory usage, etc.) are the key
deciding factors

Less/not at all tailored towards reduced operating power
requirements, options for different levels of power
management

Highly tailored to take advantage of the power saving
modes supported by the hardware and the operating
system

Response requirements are not time-critical For certain category of embedded systems like mission
critical systems, the response time requirement is highly
critical

Need not be deterministic in execution behaviour Execution behaviour is deterministic for certain types of
embedded systems like ‘Hard Real Time’ systems

History of Embedded Systems
• Embedded systems were in existence even before the IT revolution.

• Built around the old vacuum tube and transistor technologies.

• Advances in semiconductor and nanotechnology and IT revolution gave way to the
development of miniature embedded systems.

• The first recognised modern embedded system is the Apollo Guidance Computer (AGC)
developed by the MIT Instrumentation Laboratory for the lunar expedition.
• It had 36K words of fixed memory and 2K words of erasable memory.
• The clock frequency of was 1.024 MHz and it was derived from a 2.048 MHz crystal

clock.

• The first mass-produced embedded system was the Autonetics D-17 guidance
computer for the Minuteman-I missile in 1961.
• It was built using discrete transistor logic and a hard-disk for main memory.

• The first integrated circuit was produced in September 1958 and computers using them
began to appear in 1963.

Classification of Embedded Systems
• Some of the criteria used in the classification of embedded

systems are:
1. Based on generation

2. Complexity and performance requirements

3. Based on deterministic behaviour

4. Based on triggering

Classification Based on Generation
• First Generation

• Second Generation

• Third Generation

• Fourth Generation

• Next Generation

Classification Based on Generation
(continued)
• First Generation
• Early embedded systems were built around 8-bit microprocessors

like 8085 and Z80 and 4-bit microcontrollers.

• Simple in hardware circuits with firmware developed in assembly
code.

• E.g.: Digital telephone keypads, stepper motor control units, etc.

Classification Based on Generation
(continued)
• Second Generation
• Embedded systems built around 16-bit microprocessors and 8-bit

or 16-bit microcontrollers.

• Instruction set were much more complex and powerful than the
first generation.

• Some of the second generation embedded systems contained
embedded operating systems for their operation.

• E.g.: Data acquisition systems, SCADA systems, etc.

Classification Based on Generation
(continued)
• Third Generation
• Embedded systems built around 32-bit microprocessors and 16-bit

microcontrollers.
• Application and domain specific processors/controllers like Digital

Signal Processors (DSP) and Application Specific Integrated Circuits
(ASICs) came into picture.

• The instruction set of processors became more complex and powerful
and the concept of instruction pipelining also evolved.

• Dedicated embedded real time and general purpose operating systems
entered into the embedded market.

• Embedded systems spread its ground to areas like robotics, media,
industrial process control, networking, etc.

Classification Based on Generation
(continued)
• Fourth Generation
• The advent of System on Chips (SoC), reconfigurable processors

and multicore processors are bringing high performance, tight
integration and miniaturisation into the embedded device
market.

• The SoC technique implements a total system on a chip by
implementing different functionalities with a processor core on
an integrated circuit.

• They make use of high performance real time embedded
operating systems for their functioning.

• E.g.: Smart phone devices, Mobile Internet Devices (MIDs), etc.

Classification Based on Generation
(continued)
• Next Generation
• The processor and embedded market is highly dynamic and

demanding.

• The next generation embedded systems are expected to meet
growing demands in the market.

Classification Based on Complexity and
Performance
• Small-Scale Embedded Systems

• Medium-Scale Embedded Systems

• Large-Scale Embedded Systems

Classification Based on Complexity and
Performance (continued)
• Small-Scale Embedded Systems
• Simple in application needs and the performance requirements

are not time critical.

• E.g.: An electronic toy

• Usually built around low performance and low cost 8-bit or 16-bit
microprocessors/microcontrollers.

• May or may not contain an operating system for its functioning.

Classification Based on Complexity and
Performance (continued)
• Medium-Scale Embedded Systems
• Slightly complex in hardware and firmware (software)

requirements.

• Usually built around medium performance, low cost 16-bit or 32-
bit microprocessors/microcontrollers or digital signal processors.

• Usually contain an embedded operating system (either general
purpose or real time operating system) for functioning.

Classification Based on Complexity and
Performance (continued)
• Large-Scale Embedded Systems

• Highly complex in hardware and firmware (software) requirements.
• They are employed in mission critical applications demanding high

performance.
• Usually built around high performance 32-bit or 64-bit RISC

processors/controllers or Reconfigurable System on Chip (RSoC) or multi-
core processors and programmable logic devices.

• May contain multiple processors/controllers and co-units/hardware
accelerators for offloading the processing requirements from the main
processor of the system.

• Decoding/encoding of media, cryptographic function implementation, etc.
are examples of processing requirements which can be implemented using a
co-processor/hardware accelerator.

• Usually contain a high performance real time operating system (RTOS) for
task scheduling, prioritization and management.

Classification Based on Deterministic
Behaviour
• Applicable for ‘Real Time’ systems.

• The application/task execution behaviour can be either
deterministic or non-deterministic.

• Based on the execution behaviour, real time embedded systems are
classified into Hard Real Time and Soft Real Time systems.

Classification Based on Triggering
• Embedded systems which are ‘Reactive’ in nature (like process

control systems in industrial control applications) can be classified
based on the trigger.

• Reactive systems can be either event-triggered or time-triggered.

Major Application Areas of Embedded
Systems

1. Consumer electronics: Camcorders, cameras, etc.

2. Household appliances: Television, DVD players, washing machine,
refrigerators, microwave oven, etc.

3. Home automation and security systems: Air conditioners,
sprinklers, intruder detection alarms, closed circuit television
(CCTV) cameras, fire alarms, etc.

4. Automotive industry: Anti-lock braking systems (ABS), engine
control, ignition systems, automatic navigation systems, etc.

5. Telecom: Cellular telephones, telephone switches, handset
multimedia applications, etc.

Major Application Areas of Embedded
Systems (continued)

6. Computer peripherals: Printers, scanners, fax machines, etc.

7. Computer networking systems: Network routers, switches, hubs,
firewalls, etc.

8. Healthcare: Different kinds of scanners, EEG, ECG machines, etc.

9. Measurements & Instrumentation: Digital multimeters, digital
CROs, logic analyzers, PLC systems, etc.

10. Banking & Retail: Automated teller machines (ATM) and currency
counters, point of sales (POS), etc.

11. Card readers: Barcode, smart card readers, hand held devices, etc.

Purpose of Embedded Systems
• Each embedded system is designed to serve the purpose of any one

or a combination of the following tasks:

1. Data Collection/Storage/Representation

2. Data Communication

3. Data (Signal) Processing

4. Monitoring

5. Control

6. Application Specific User Interface

Purpose of Embedded Systems
(continued)
• Data Collection/Storage/Representation
• Embedded systems designed for the purpose of

data collection performs acquisition of data from
the external world.

• Data collection is usually done for storage,
analysis, manipulation and transmission.

• The term "data" refers all kinds of information,
viz. text, voice, image, video, electrical signals and
any other measurable quantities.

• Data can be either analog (continuous) or digital
(discrete).

• The collected data may be stored or transmitted
or it may be processed or it may be deleted
instantly after giving a meaningful representation.

• A digital camera is a typical
example of an embedded system
with data
collection/storage/representation
of data.

• Images are captured and the
captured image may be stored
within the memory of the camera.

• The captured image can also be
presented to the user through a
graphic LCD unit.

Purpose of Embedded Systems
(continued)
• Data Communication
• Embedded data communication systems are

deployed in applications ranging from complex
satellite communication systems to simple
home networking systems.

• The transmission is achieved either by a wire-
line medium or by a wireless medium.

• The data collecting embedded terminal itself
can incorporate data communication units like
wireless modules (Bluetooth, ZigBee, Wi-Fi,
EDGE, GPRS, etc.) or wire-line modules (RS-
232C, USB, TCP/IP, PS2, etc.).

Fig: A wireless network router for
data communication

• Network hubs, routers, switches,
etc. are typical examples of
dedicated data transmission
embedded systems.

• They act as mediators in data
communication and provide
various features like data security,
monitoring etc.

Purpose of Embedded Systems
(continued)
• Data (Signal) Processing
• The data (voice, image, video, electrical signals

and other measurable quantities) collected by
embedded systems may be used for various
kinds of data processing.

• Embedded systems with signal processing
functionalities are employed in applications
demanding signal processing like speech
coding, synthesis, audio video codec,
transmission applications, etc.

• A digital hearing aid is a typical
example of an embedded system
employing data processing.

• Digital hearing aid improves the
hearing capacity of hearing
impaired persons.

Purpose of Embedded Systems
(continued)
• Monitoring

• Almost embedded products coming under the medical
domain are used for monitoring.

• A very good example is the electro cardiogram (ECG)
machine for monitoring the heartbeat of a patient.
• The machine is intended to do the monitoring of the heartbeat.

• It cannot impose control over the heartbeat.

• The sensors used in ECG are the different electrodes connected
to the patient's body.

• Some other examples of embedded systems with
monitoring function are measuring instruments like
digital CRO, digital multimeters, logic analyzers, etc.
used in Control & Instrumentation applications.

Fig: A patient monitoring system for
monitoring heartbeat

Purpose of Embedded Systems
(continued)
• Control
• Embedded systems with control functionalities

impose control over some variables according to
the changes in input variables.

• A system with control functionality contains both
sensors and actuators.

• Sensors are connected to the input port for
capturing the changes in environmental variable
or measuring variable.

• The actuators connected to the output port are
controlled according to the changes in input
variable to put an impact on the controlling
variable to bring the controlled variable to the
specified range.

• An Air Conditioner System used to
control the room temperature to
a specified limit is a typical
example for embedded system for
control purpose.

• An air conditioner contains a
room temperature-sensing
element (sensor) which may be a
thermistor and a handheld unit
for setting up (feeding) the
desired temperature.

Purpose of Embedded Systems
(continued)
• Application Specific User Interface
• These are embedded systems with

application-specific user interfaces like
buttons, switches, keypad, lights, bells, display
units, etc.

• Mobile phone is an example for this.

• In mobile phone the user interface is provided
through the keypad, graphic LCD module,
system speaker, vibration alert, etc.

• A mobile phone is an example for
embedded system with an
application-specific user
interfaces.

A Typical Embedded
System

A Typical Embedded System

Fig: Elements of an Embedded System

A Typical Embedded System (continued)
• It contains a single chip controller, which acts as the master brain of

the system.

• The controller can be
 A microprocessor or

 A microcontroller or

 A Field Programmable Gate Array (FPGA) device or

 A Digital Signal Processor (DSP) or

 An Application Specific Integrated Circuit (ASIC)/Application Specific
Standard Product (ASSP)

A Typical Embedded System (continued)
• An embedded system can be viewed as a reactive system.

• The control is achieved by processing the information coming from
the sensors and user interfaces, and controlling some actuators
that regulate the physical variable.

• Key boards, push button switches, etc. are examples for common
user interface input devices.

• LEDs, liquid crystal displays, piezoelectric buzzers, etc. are examples
for common user interface output devices for a typical embedded
system.

A Typical Embedded System (continued)
• The memory of the system is responsible for holding the control algorithm and other

important configuration details.

• For most of embedded systems, the memory for storing the algorithm or configuration data is
of fixed type, which is a kind of Read Only Memory (ROM).

• It is not available for the end user for modifications

• The memory is protected from unwanted user interaction by implementing some kind of
memory protection mechanism.

• The most common types of memories used in embedded systems for control algorithm
storage are OTP, PROM, UVEPROM, EEPROM and FLASH.

• Sometimes the system requires temporary memory for performing arithmetic operations or
control algorithm execution and this type of memory is known as "working memory".

• Random Access Memory (RAM) is used in most of the systems as the working memory.

• Various types of RAM like SRAM, DRAM and NVRAM are used for this purpose.

A Typical Embedded System (continued)
• Apart from these, communication interface is essential for

communicating with various subsystems of the embedded system
and with the external world.

• The communication interfaces may be used to achieve onboard
(I2C, SPI, UART, parallel bus interface, etc.) or external
communication (wireless interfaces like Infrared, Bluetooth, Wi-Fi,
etc.)

Core of the Embedded
System

Core of the Embedded System
• Embedded systems are domain and application specific and are built around a

central core.

• The core of the embedded system falls into any one of the following
categories:

1. General Purpose and Domain Specific Processors

1. Microprocessors

2. Microcontrollers

3. Digital Signal Processors

2. Application Specific Integrated Circuits (ASICs)

3. Programmable Logic Devices (PLDs)

4. Commercial off-the-shelf Components (COTS)

General Purpose and Domain Specific
Processors
• Almost 80% of the embedded systems are processor/controller based.

• The processor may be a microprocessor or a microcontroller or a digital signal
processor, depending on the domain and application.

• Most of the embedded systems in the industrial control and monitoring
applications make use of the commonly available microprocessors or
microcontrollers.

• Domains which require signal processing such as speech coding, speech
recognition, etc. make use of special kind of digital signal processors.

Microprocessors
• A Microprocessor is a silicon chip representing a central processing unit (CPU),

which is capable of performing arithmetic as well as logical operations
according to a pre-defined set of instructions.

• In general the CPU contains the Arithmetic and Logic Unit (ALU), control unit
and working registers.

• A microprocessor is a dependent unit and it requires the combination of other
hardware like memory, timer unit, and interrupt controller, etc. for proper
functioning.

• Intel, AMD, Freescale, IBM, TI, Cyrix, Hitachi, NEC, LSI Logic, etc. are the key
players in the processor market.

General Purpose Processor (GPP) vs. Application-
Specific Instruction Set Processor (ASIP)

General Purpose Processor (GPP)

• A General Purpose Processor or GPP is a

processor designed for general computational
tasks.

• The processor running inside laptop or desktop
is a typical example for general purpose
processor.

• Due to the high volume production, the per unit
cost for a chip is low.

• A typical general purpose processor contains an
Arithmetic and Logic Unit (ALU) and Control Unit
(CU).

Application-Specific Instruction Set Processor
(ASIP)

• Application Specific Instruction Set Processors (ASIPs)
are processors with architecture and instruction set
optimised to specific-domain/application requirements
like network processing, automotive, telecom, media
applications, digital signal processing, control
applications, etc.

• Most of the embedded systems are built around
application specific instruction set processors.

• Some microcontrollers (like automotive AVR, USB
AVR from Atmel), system on chips, digital signal
processors, etc. are examples for application specific
instruction set processors (ASIPs).

• ASIPs incorporate a processor and on-chip peripherals,
demanded by the application requirement, program and
data memory.

Microcontrollers
• A Microcontroller is a highly integrated chip that contains a CPU,

scratch pad RAM, special and general purpose register arrays, on chip
ROM/FLASH memory for program storage, timer and interrupt control
units and dedicated I/O ports.

• A microcontroller contains all the necessary functional blocks for
independent working.
• Have greater place in embedded domain in place of microprocessors.
• They are cheap, cost effective and are readily available in the market.

• Atmel, Texas Instruments, Toshiba, Philips, Freescale, NEC, Zilog,
Hitachi, Mitsubishi, Infineon, ST Micro Electronics, National,
Microchip, Analog Devices, Daewoo, Intel, Maxim, Sharp, Silicon
Laboratories, TDK, Triscend, Winbond, etc. are the key players in the
microcontroller market.

Microprocessor vs. Microcontroller
Microprocessor Microcontroller

A silicon chip representing a central processing unit (CPU), which is
capable of performing arithmetic as well as logical operations
according to a pre-defined set of instructions

A microcontroller is a highly integrated chip that contains a CPU,
scratchpad RAM, special and general purpose register arrays, on
chip ROM/ FLASH memory for program storage, timer and
interrupt control units and dedicated I/O ports

It is a dependent unit. It requires the combination of other chips
like timers, program and data memory chips, interrupt controllers,
etc. for functioning

It is a self-contained unit and it doesn't require external interrupt
controller, timer, UART, etc. for its functioning

Most of the time, general purpose in design and operation Mostly application-oriented or domain-specific

Doesn't contain a built in I/O port. The I/O port functionality needs
to be implemented with the help of external programmable
peripheral interface chips like 8255

Most of the processors contain multiple built-in I/O ports which
can be operated as a single 8 or 16 or 32 bit port or as individual
port pins

Targeted for high end market where performance is important Targeted for embedded market where performance is not so
critical

Limited power saving options compared to microcontrollers Includes lot of power saving features

Digital Signal Processors
• Digital Signal Processors (DSPs) are powerful special purpose 8/16/32 bit

microprocessors designed specifically to meet the computational demands and power
constraints of today's embedded audio, video, and communications applications.

• Digital signal processors are 2 to 3 times faster than the general purpose
microprocessors in signal processing applications.
• This is because of the architectural difference between the two.
• DSPs implement algorithms in hardware which speeds up the execution whereas

general purpose processors implement the algorithm in firmware and the speed of
execution depends primarily on the clock for the processors.

• Audio video signal processing, telecommunication and multimedia applications are
typical examples where DSP is employed.

• Digital signal processing employs a large amount of real-time calculations.

• Sum of products (SOP) calculation, convolution, fast fourier transform (FFT), discrete
fourier transform (DFT), etc, are some of the operations performed by digital signal
processors.

Digital Signal Processors (continued)
• A typical digital signal processor incorporates the following key units:

• Program Memory: Memory for storing the program required by DSP to process
the data

• Data Memory: Working memory for storing temporary variables and
data/signal to be processed.

• Computational Engine: Performs the signal processing in accordance with the
stored program memory.
• It incorporates many specialised arithmetic units and each of them operates

simultaneously to increase the execution speed.
• It also incorporates multiple hardware shifters for shifting operands and thereby

saves execution time.

• I/O Unit: Acts as an interface between the outside world and DSP.
• It is responsible for capturing signals to be processed and delivering the processed

signals.

RISC vs. CISC Processors/Controllers
• RISC stands for Reduced Instruction Set Computing.
• All RISC processors/controllers possess lesser number of instructions,

typically in the range of 30 to 40.

• E.g.: Atmel AVR microcontroller – its instruction set contains only 32
instructions.

• CISC stands for Complex Instruction Set Computing.
• The instruction set is complex and instructions are high in number.

• E.g.: 8051 microcontroller – its instruction set contains 255
instructions.

RISC CISC

Lesser number of instructions Greater number of instructions

Instruction pipelining and increased execution speed Generally no instruction pipelining feature

Orthogonal instruction set (Allows each instruction to operate on
any register and use any addressing mode)

Non-orthogonal instruction set (All instructions are not allowed to
operate on any register and use any addressing mode. It is
instruction-specific)

Operations are performed on registers only, the only memory
operations are load and store

Operations are performed on registers or memory depending on the
instruction

A large number of registers are available Limited number of general purpose registers

Programmer needs to write more code to execute a task since the
instructions are simpler ones

Instructions are like macros in C language. A programmer can
achieve the desired functionality with a single instruction which in
turn provides the effect of using more simpler single instructions in
RISC

Single, fixed length instructions Variable length instructions

Less silicon usage and pin count More silicon usage since more additional decoder logic is required
to implement the complex instruction decoding

With Harvard Architecture Can be Harvard or Von-Neumann Architecture

Harvard vs. Von-Neumann
Processor/ControIIer Architecture
• Von-Neumann Architecture
• Microprocessors/controllers based on the Von-Neumann architecture

share a single common bus for fetching both instructions and data.

• Program instructions and data are stored in a common main memory.

• They first fetch an instruction and then fetch the data to support the
instruction from code memory.
• The two separate fetches slows down the controller's operation.

• Von-Neumann architecture is also referred as Princeton architecture,
since it was developed by the Princeton University.

Harvard vs. Von-Neumann
Processor/ControIIer Architecture (continued)
• Harvard Architecture
• Microprocessors/controllers based on the Harvard architecture will

have separate data bus and instruction bus.
• This allows the data transfer and program fetching to occur simultaneously on

both buses.

• The data memory can be read and written while the program memory
is being accessed.

• These separated data memory and code memory buses allow one
instruction to execute while the next instruction is fetched ("pre-
fetching").
• The pre-fetch theoretically allows much faster execution than Von-Neumann

architecture.

Harvard vs. Von-Neumann
Processor/ControIIer Architecture (continued)
Harvard Architecture Von-Neumann Architecture

Separate buses for instruction and data fetching Single shared bus for instruction and data fetching

Easier to pipeline, so high performance can be
achieved

Low performance compared to Harvard
architecture

Comparatively high cost Cheaper

No memory alignment problems Allows self modifying codes

Since data memory and program memory are
stored physically in different locations, no chances
for accidental corruption of program memory

Since data memory and program memory are
stored physically in the same chip, chances for
accidental corruption of program memory

Big-Endian vs. Little-Endian
Processors/Controllers
• Endianness specifies the order in which the data is stored in the

memory by processor operations in a multi byte system.

• Suppose the word length is two byte then data can be stored in
memory in two different ways:
1. Higher order of data byte at the higher memory and lower order of

data byte at location just below the higher memory – Little-Endian
◦ E.g.: Intel x86 Processors

2. Lower order of data byte at the higher memory and higher order of
data byte at location just below the higher memory – Big-Endian

◦ E.g.: Motorola 68000 Series Processors

Big-Endian vs. Little-Endian
Processors/Controllers (continued)
• Little-endian means the lower-order byte of the data is stored in

memory at the lowest address, and the higher-order byte at the
highest address. (The little end comes first.)
• For example, a 4 byte long integer Byte3 Byte2 Byte1 Byte0 will be

stored in the memory as shown below:

Big-Endian vs. Little-Endian
Processors/Controllers (continued)
• Big-endian means the higher-order byte of the data is stored in

memory at the lowest address, and the lower-order byte at the
highest address. (The big end comes first.)
• For example, a 4 byte long integer Byte3 Byte2 Byte1 Byte0 will be

stored in the memory as shown below:

Load Store Operation and Instruction
Pipelining
• The memory access related operations are performed by the

special instructions load and store.
• If the operand is specified as memory location, the content of it is

loaded to a register using the load instruction.

• The instruction store stores data from a specified register to a
specified memory location.

• The concept of Load Store Architecture is illustrated with the
following example:
• Suppose x, y and z are memory locations and we want to add the

contents of x and y and store the result in location z. Under the load
store architecture the same is achieved with 4 instructions as shown:

Load Store Operation and Instruction
Pipelining (continued)

Fig: The concept of load store architecture

• The first instruction load R1, x loads the register R1 with the content of memory location x.

• The second instruction load R2, y loads the register R2 with the content of memory location y.

• The instruction add R3, R1, R2 adds the content of registers R1 and R2 and stores the result in
register R3.

• The next instruction store R3,z stores the content of register R3 in memory location z.

Load Store Operation and Instruction
Pipelining (continued)
• The conventional instruction execution by the processor follows the

fetch-decode-execute sequence.
• The fetch part fetches the instruction from program memory or code

memory.

• The decode part decodes the instruction to generate the
necessary control signals.

• The execute stage reads the operands, perform ALU operations and
stores the result.

• In conventional program execution, the fetch and decode
operations are performed in sequence. For simplicity let's consider
decode and execution together.

Load Store Operation and Instruction
Pipelining (continued)
• During the decode operation, the memory address bus is available and if

it is possible to effectively utilise it for an instruction fetch, the
processing speed can be increased.

• Instruction pipelining refers to the overlapped execution of instructions –
i.e., while the current instruction is being decoded and executed, the
next instruction will be fetched.

• If the current instruction in progress is a program control flow transfer
instruction like jump or call instruction, the instruction fetched is flushed
and a new instruction fetch is performed to fetch the instruction.

• Whenever the current instruction is executing the program counter will
be loaded with the address of the next instruction.

• In case of jump or branch instruction, the new location is known only
after completion of the jump or branch instruction.

Load Store Operation and Instruction
Pipelining (continued)
• Depending on the stages involved in an instruction (fetch, read register and

decode, execute instruction, access an operand in data memory, write back the
result to register, etc.), there can be multiple levels of instruction pipelining.

• Figure illustrates the concept of instruction pipelining for single stage
pipelining.

Fig: The single-stage pipelining concept

Application Specific Integrated Circuits
(ASICs)
• Application Specific Integrated Circuit (ASIC) is a microchip designed to perform a specific or

unique application.
• Used as replacement to conventional general purpose logic chips.

• It integrates several functions into a single chip and there by reduces the system development
cost.

• ASIC consumes a very small area in the total system.
• Helps in the design of smaller systems with high capabilities/functionalities.

• Fabrication of ASICs requires a non-refundable initial investment for the process technology
and configuration expenses. This investment is known as Non-Recurring Engineering Charge
(NRE) and it is a one time investment.

• If the Non-Recurring Engineering Charges (NRE) is borne by a third party and the ASIC is made
openly available in the market, the it is referred as Application Specific Standard Product
(ASSP).
• E.g.: ADE7760 Energy Meter ASIC developed by Analog Devices for Energy metering applications

Programmable Logic Devices
• Logic devices provide specific functions, including device-to-device interfacing, data

communication, signal processing, data display, timing and control operations, and
almost every other function a system must perform.

• Logic devices can be classified into two broad categories—fixed and programmable.

• The circuits in a fixed logic device are permanent, they perform one function or set of
functions—once manufactured, they cannot be changed.

• Programmable Logic Devices (PLDs) offer customers a wide range of logic capacity,
features, speed, and voltage characteristics and these devices can be re-configured to
perform any number of functions at any time.
• Designers use inexpensive software tools to quickly develop, simulate, and test their

designs.

• Then, a design can be quickly programmed into a device, and immediately tested in a live
circuit.

Programmable Logic Devices (continued)
• There are no NRE costs and the final design is completed much faster than that

of a custom, fixed logic device.

• Another key benefit of using PLDs is that during the design phase customers
can change the circuitry as often as they want until the design operates to their
satisfaction.
• PLDs are based on re-writable memory technology to change the design, the device

is simply reprogrammed.

• Once the design is final, customers can go into immediate production by simply
programming as many PLDs as they need with the final software design file.

• The two major types of programmable logic devices are Field Programmable
Gate Arrays (FPGAs) and Complex Programmable Logic Devices (CPLDs).

CPLDs and FPGAs
FPGAs

• The FPGAs offer the highest amount of logic density,
the most features, and the highest performance.

• The largest FPGA now shipping, part of the Xilinx
Virtex line of devices, provides eight million "system
gates" (the relative density of logic).

• These advanced devices also offer features such as
built-in hardwired processors (such as the IBM power
PC), substantial amounts of memory, clock
management systems, and support for many of the
latest, very fast device-to-device signaling
technologies.

• FPGAs are used in a wide variety of applications
ranging from data processing and storage, to
instrumentation, telecommunications, and digital
signal processing.

CPLDs

• CPLDs offer much smaller amounts of logic—up to
about 10,000 gates.

• But CPLDs offer very predictable timing
characteristics and are therefore ideal for critical
control applications.

• CPLDs such as the Xilinx CoolRunner series also
require extremely low amounts of power and are
very inexpensive, making them ideal for cost-
sensitive, battery-operated, portable applications
such as mobile phones and digital handheld
assistants.

Advantages of PLD
• PLDs offer customers much more flexibility during the design cycle because design

iterations are simply a matter of changing the programming file, and the results of
design changes can be seen immediately in working parts.

• PLDs do not require long lead times for prototypes or production parts—the PLDs are
already on a distributor's shelf and ready for shipment.

• PLDs do not require customers to pay for large NRE costs and purchase expensive
mask sets—PLD suppliers incur those costs when they design their programmable
devices and are able to amortize those costs over the multi-year lifespan of a given
line of PLDs.

• PLDs allow customers to order just the number of parts they need, when they need
them, allowing them to control inventory.

• PLDs can be reprogrammed even after a piece of equipment is shipped to a customer.
The manufacturers can add new features or upgrade products that already are in the
field. To do this, they simply upload a new programming file to the PLD, via the
Internet, creating new hardware logic in the system.

Commercial Off-the-Shelf Components
(COTS)
• A Commercial Off-the-Shelf (COTS) product is one which is used 'as-is’.

• COTS products are designed in such a way to provide easy integration and
interoperability with existing system components.

• The COTS component itself may be developed around a general purpose or
domain specific processor or an Application Specific Integrated Circuit or a
Programmable Logic Device.

• Advantages:
• They are readily available in the market

• Cheap

• Developer can cut down his development time to a great extent

• Reduces the time to market

Commercial Off-the-Shelf Components
(COTS) (continued)
• Typical examples of COTS hardware unit are remote

controlled toy car control units including the RF
circuitry part, high performance, high frequency
microwave electronics (2—200 GHz), high
bandwidth analog-to-digital converters, devices
and components for operation at very high
temperatures, electro-optic IR imaging arrays,
UV/IR detectors, etc.

• E.g.: The TCP/IP plug-in module available from
various manufactures like 'WIZnet', 'Freescale',
'Dynalog', etc. are very good examples of COTS
product.

Fig: An example of a COTS product for
TCP/IP plug-in from WIZnet
(WIZnet NM7010A Plug in Module)

Memory

Memory
• Memory is an important part of a processor/controller based

embedded systems.

• Some of the processors/controllers contain built in memory and
this memory is referred as on-chip memory.

• Others do not contain any memory inside the chip and requires
external memory to be connected with the controller/processor to
store the control algorithm. It is called off-chip memory.

• Also some working memory is required for holding data temporarily
during certain operations.

Program Storage Memory (ROM)
• The program memory or code storage memory of an embedded system

stores the program instructions.

• The code memory retains its contents even after the power is turned off.
It is generally known as non-volatile storage memory.

• It can be classified into different types as shown:

Masked ROM (MROM)
• Masked ROM is a one-time programmable device.

• Masked ROM makes use of the hardwired technology for storing data.

• The device is factory programmed by masking and metallisation process
at the time of production itself, according to the data provided by the
end user.

• Advantage – low cost for high volume production.

• Limitation – inability to modify the device firmware against firmware
upgrades.
• Since the MROM is permanent in bit storage, it is not possible to alter the bit

information.

Masked ROM (MROM) (continued)
• Different mechanisms are used for the masking process of the

ROM, like

1. Creation of an enhancement or depletion mode transistor
through channel implant.

2. By creating the memory cell either using a standard transistor or
a high threshold transistor.
• In the high threshold mode, the supply voltage required to turn ON

the transistor is above the normal ROM IC operating voltage.

• This ensures that the transistor is always off and the memory cell
stores always logic 0.

Programmable Read Only Memory
(PROM) / (OTP)
• One Time Programmable Memory (OTP) or PROM is not pre-programmed by

the manufacturer.
• The end user is responsible for programming these devices.

• This memory has nichrome or polysilicon wires arranged in a matrix. These
wires can be functionally viewed as fuses.
• It is programmed by a PROM programmer which selectively burns the fuses

according to the bit pattern to be stored.
• Fuses which are not blown/burned represents a logic “1" whereas fuses which are

blown/burned represents a logic 0 .
• The default state is logic "1".

• OTP is widely used for commercial production of embedded systems whose
prototyped versions are proven and the code is finalised.
• It is a low cost solution for commercial production.

• OTPs cannot be reprogrammed.

Erasable Programmable Read Only
Memory (EPROM)
• Erasable Programmable Read Only Memory (EPROM) gives the flexibility

to re-program the same chip.

• EPROM stores the bit information by charging the floating gate of an FET.

• Bit information is stored by using an EPROM programmer, which applies
high voltage to charge the floating gate.

• EPROM contains a quartz crystal window for erasing the stored
information.
• If the window is exposed to ultraviolet rays for a fixed duration, the entire

memory will be erased.

• Even though the EPROM chip is flexible in terms of re-programmability, it
needs to be taken out of the circuit board and put in a UV eraser device
for 20 to 30 minutes.
• It is a tedious and time-consuming process.

Electrically Erasable Programmable Read
only Memory (EEPROM)
• The information contained in the EEPROM memory can be altered

by using electrical signals at the register/byte level.

• They can be erased and reprogrammed in-circuit.

• These chips include a chip erase mode and in this mode they can be
erased in a few milliseconds.

• It provides greater flexibility for system design.

• The only limitation is their capacity is limited (a few kilobytes) when
compared with the standard ROM.

FLASH
• FLASH memory is a variation of EEPROM technology – It combines the re-

programmability of EEPROM and the high capacity of standard ROMs.

• FLASH is the latest ROM technology.
• Most popular ROM technology used in today's embedded designs.

• FLASH memory is organised as sectors (blocks) or pages.

• FLASH memory stores information in an array of floating gate MOSFET
transistors.

• The erasing of memory can be done at sector level or page level without
affecting the other sectors or pages.

• Each sector/page should be erased before re-programming.

• The typical erasable capacity of FLASH is 1000 cycles.

• E.g.: W27C512 from WINBOND is an example of 64KB FLASH memory.

Non-Volatile RAM (NVRAM)
• Non-volatile RAM is a random access memory with battery backup.

• It contains static RAM based memory and a minute battery for
providing supply to the memory in the absence of external power
supply.

• The memory and battery are packed together in a single package.

• The life span of NVRAM is expected to be around 10 years.

• E.g.: DS1644 from Maxim/Dallas is an example of 32KB NVRAM.

Read-Write Memory/Random Access
Memory (RAM)
• RAM is the data memory or working memory of the controller/processor.

• Controller/processor can read from it and write to it.

• RAM is volatile – when the power is turned off, all the contents are
destroyed.

• RAM is a direct access memory – we can access the desired memory
location directly without the need for traversing through the entire
memory locations to reach the desired memory position (i.e. random
access of memory location).
• This is in contrast to the Sequential Access Memory (SAM), where the desired

memory location is accessed by either traversing through the entire memory
or through a 'seek' method. Magnetic tapes, CD ROMs, etc. are examples of
sequential access memories.

Read-Write Memory/Random Access
Memory (RAM) (continued)
• RAM generally falls into three categories: Static RAM (SRAM),

Dynamic RAM (DRAM) and Non-Volatile RAM (NVRAM).

Static RAM (SRAM)
• Static RAM stores data in the form of voltage.

• They are made up of flip-flops.

• Static RAM is the fastest form of RAM available.
• Fast due to its resistive networking and switching capabilities.

• In typical implementation, an SRAM cell (bit) is realised using six
transistors (or 6 MOSFETs).
• Four of the transistors are used for building the latch (flip-flop) part of

the memory cell and two for controlling the access.

Static RAM (SRAM) (continued)
• In its simplest representation an SRAM cell can be visualised as

shown in the figure below:

Fig: SRAM cell implementation

Static RAM (SRAM) (continued)
• This implementation in its simpler form can be visualised as two

cross-coupled inverters with read/write control through transistors.
• The four transistors in the middle form the cross-coupled inverters.

• This can be visualised as shown in the figure below:

Fig: Visualisation of SRAM cell

Static RAM (SRAM) (continued)
• The access to the memory cell is controlled by Word Line, which

controls the access transistors (MOSFETs) Q5 and Q6.
• The access transistors control the connection to bit lines B & B\.

• In order to write a value to the memory cell, apply the desired value
to the bit control lines (For writing 1, make B = 1 and B\ = 0; For
writing 0, make B = 0 and B\ = 1) and assert the Word Line (Make
Word line high).
• This operation latches the bit written in the flip-flop.

• For reading the content of the memory cell, assert both B and B\ bit
lines to 1 and set the Word line to 1.

• The major limitations of SRAM are low capacity and high cost.

Dynamic RAM (DRAM)
• Dynamic RAM stores data in the form of charge.

• They are made up of MOS transistor gates.

• Advantages – high density and low cost compared to SRAM.

• Disadvantage – since the information is stored as charge it gets
leaked off with time and to prevent this they need to be refreshed
periodically.

• Special circuits called DRAM controllers are used for the refreshing
operation.

• The refresh operation is done periodically in milliseconds interval.

Dynamic RAM (DRAM) (continued)
• Figure below illustrates the typical implementation of a DRAM cell.

• The MOSFET acts as the gate for the incoming and outgoing data
whereas the capacitor acts as the bit storage unit.

Fig: DRAM cell implementation

SRAM vs DRAM
• Table given below summarises the relative merits and demerits of

SRAM and DRAM technology.

SRAM Cell DRAM Cell

Made up of 6 CMOS transistors (MOSFET) Made up of a MOSFET and a capacitor

Doesn't require refreshing Requires refreshing

Low capacity (Less dense) High capacity (Highly dense)

More expensive Less expensive

Fast in operation. Typical access time is 10ns Slow in operation due to refresh requirements.
Typical access time is 60ns. Write operation is faster
than read operation.

Memory According to the Type of
Interface
• The interface (connection) of memory with the processor/controller can

be of various types.
• Parallel interface
• Serial interface like I2C
• SPI (Serial peripheral interface)
• Single wire interconnection (like Dallas 1-Wire interface)

• Serial interface is commonly used for data storage memory like EEPROM.

• The memory density of a serial memory is usually expressed in terms of
kilobits, whereas that of a parallel interface memory is expressed in terms
of kilobytes.

• Atmel Corporations AT24C512 is an example for serial memory with
capacity 512 kilobits and 2-wire interface.

Memory Shadowing
• Generally the execution of a program or a configuration from a ROM is

very slow (120 to 200 ns) compared to the execution from a RAM(40 to
70 ns).
• RAM access is about three times as fast as ROM access.

• Memory Shadowing is a technique adopted to solve the execution speed
problem in processor-based systems.

• In computer systems and video systems there will be a configuration
holding ROM called Basic Input Output Configuration ROM or simply
BIOS.
• BIOS stores the hardware configuration information like the address assigned

for various serial ports and other non-plug 'n' play devices, etc.
• Usually it is read and the system is configured according to it during system

boot up and it is time consuming.

Memory Shadowing (continued)
• In memory shadowing, a RAM is included behind the logical layer of

BIOS at its same address as a shadow to the BIOS.

• The first step that happens during the boot up is copying the BIOS to
the shadowed RAM and write protecting the RAM then disabling the
BIOS reading.
• RAM is volatile and it cannot hold the configuration data which is

copied from the BIOS when the power supply is switched off. Only a
ROM can hold it permanently.

• But for high system performance it should be accessed from a RAM
instead of accessing from a ROM.

Memory Selection for Embedded
Systems
• Embedded systems require a

• Program memory for holding the control algorithm or embedded OS and the
applications designed to run on top of it

• Data memory for holding variables and temporary data during task execution

• Memory for holding non-volatile data (like configuration data, look up table
etc) which are modifiable by the application

• The memory requirement for an embedded system in terms of RAM and
ROM (EEPROM/FLASH/NVRAM) is solely dependent on the type of the
embedded system and the applications for which it is designed.
• Lot of factors need to be considered when selecting the type and size of

memory for embedded system.

Memory Selection for Embedded
Systems (continued)
• For example, if the embedded system is designed using SOC or a

microcontroller with on-chip RAM and ROM (FLASH/EEPROM),
depending on the application need the on-chip memory may be
sufficient for designing the total system.

• Consider a simple electronic toy design as an example.
• As the complexity of requirements are less and data memory

requirement are minimal, we can think of a microcontroller with a few
bytes of internal RAM, a few bytes or kilobytes of FLASH memory and a
few bytes of EEPROM (if required) for designing the system. Hence
there is no need for external memory at all.

• A PIC microcontroller device which satisfies the I/O and memory
requirements can be used in this case.

Memory Selection for Embedded
Systems (continued)
• If the embedded design is based on an RTOS, the RTOS requires certain

amount of RAM for its execution and ROM for storing the RTOS image.

• Normally the binary code for RTOS kernel containing all the services is
stored in a non-volatile memory (Like FLASH) as either compressed or
non-compressed data.

• During boot-up of the device, the RTOS files are copied from the program
storage memory, decompressed if required and then loaded to the RAM
for execution.

• A smart phone device with Windows mobile operating system is a typical
example for embedded device with OS.
• Say 64MB RAM and 128MB ROM are the minimum requirements for running

the Windows mobile device, extra RAM and ROM are needed for running
user applications.

Memory Selection for Embedded
Systems (continued)
• There are two parameters for representing a memory:

1. Size of the memory chip – Memory density expressed in terms of number of memory
bytes per chip.
◦ Memory chips come in standard sizes like 512 bytes, 1024 bytes (1 kilobyte), 2048 bytes (2

kilobytes), 4KB, 8KB, 16KB, 32KB, 64KB, 128KB, 256KB, 512KB, 1024KB(1 megabytes), etc.

◦ While selecting a memory size, the address range supported by the processor must also be
considered. For example, for a processor/controller with 16 bit address bus, the maximum
number of memory locations that can be addressed is 216 = 65536 bytes = 64KB

◦ The entire memory range supported by the processor/controller may not be available to the
memory chip alone. It may be shared between I/O, other ICs and memory.

2. Word size of the memory – The number of memory bits that can be read/written
together at a time.
◦ Word size can be 4, 8, 12, 16, 24, 32, etc.
◦ The word size supported by the memory chip must match with the data bus width of the

processor/controller.

Memory Selection for Embedded
Systems (continued)
• FLASH memory is the popular choice for ROM in embedded applications.

• It is a powerful and cost-effective solid-state storage technology for mobile electronics devices
and other consumer applications.

• FLASH memory comes in two major variants – NAND FLASH and NOR FLASH.

• NAND FLASH is a high-density low cost non-volatile storage memory, while NOR FLASH is less
dense and slightly expensive.

• NOR FLASH supports the Execute in Place (XIP) technique for program execution.
• The XIP technology allows the execution of code memory from ROM itself without the need for copying

it to the RAM as in the case of conventional execution method.

• It is a good practice to use a combination of NOR and NAND memory for storage memory
requirements, where NAND can be used for storing the program code and/or data like the data
captured in a camera device.
• NAND FLASH doesn't support XIP and if NAND FLASH is used for storing program code, a DRAM can be

used for copying and executing the program code.
• NOR FLASH supports XIP and it can be used as the memory for bootloader or for even storing the

complete program code.

Memory Selection for Embedded
Systems (continued)
• The EEPROM data storage memory is available as either serial

interface or parallel interface chip.

• If the processor/controller of the device supports serial interface and
the amount of data to write and read to and from the device is less, it
is better to have a serial EEPROM chip.

• The serial EEPROM saves the address space of the total system.

• The memory capacity of the serial EEPROM is usually expressed in
bits or kilobits.
• 512 bits, 1Kbits, 2Kbits, 4Kbits, etc. are examples for serial EEPROM

memory representation.

Memory Selection for Embedded
Systems (continued)
• For embedded systems with low power requirements like portable

devices, choose low power memory devices.

• Certain embedded devices may be targeted for operating at extreme
environmental conditions like high temperature, high humid area,
etc.
• Select an industrial grade memory chip in place of the commercial grade

chip for such devices.

Sensors and Actuators

Sensors and Actuators
• An embedded system is in constant interaction with the real world

and the controlling/monitoring functions executed by the embedded
system is achieved in accordance with the changes happening to the
real world.

• The changes in system environment or variables are detected by the
sensors connected to the input port of the embedded system.

• If the embedded system is designed for any controlling purpose, the
system will produce some changes in the controlling variable to bring
the controlled variable to the desired value.
• It is achieved through an actuator connected to the output port of the

embedded system.

Sensors and Actuators (continued)
• A sensor is a transducer device that converts energy from one form

to another for any measurement or control purpose.
• E.g.: Temperature sensor, magnetic hall effect sensor, humidity sensor,

etc.

• An actuator is a form of transducer device (mechanical or electrical)
which converts signals to corresponding physical action (motion).
• Actuator acts as an output device.

• E.g.: Stepper motor

The I/O Subsystem
• The I/O subsystem of the embedded system facilitates the interaction

of the embedded system with the external world.

• The interaction happens through the sensors and actuators
connected to the input and output ports respectively of the
embedded system.

• The sensors may not be directly interfaced to the input ports, instead
they may be interfaced through signal conditioning and translating
systems like ADC, optocouplers, etc.

Light Emitting Diode (LED)
• Light Emitting Diode (LED) is an important output device for visual

indication in any embedded system.

• LED can be used as an indicator for the status of various signals or
situations.
• E.g.: 'Device ON', 'Battery low' or 'Charging of battery’ conditions

• Light Emitting Diode is a p-n junction diode and it contains an
anode and a cathode.

• For proper functioning of the LED, the anode is connected to +ve
terminal of the supply voltage and cathode to the -ve terminal of
supply voltage.

• The current flowing through the LED must be limited to a value
below the maximum current that it can conduct.
• A resister is used in series to limit the current through the LED.

• The ideal LED interfacing circuit is shown in the figure.

Fig: LED interfacing

Light Emitting Diode (LED) (continued)
• LEDs can be interfaced to the port pin of a processor/controller in

two ways:
• In the first method, the anode is directly connected to the port pin and

the port pin drives the LED.
• The port pin 'sources' current to the LED when the port pin is at logic High (Logic

‘1’).

• In the second method, the cathode of the LED is connected to the port
pin of the processor/controller and the anode to the supply voltage
through a current limiting resistor.

• The LED is turned on when the port pin is at logic Low (Logic '0’).

• Here the port pin 'sinks' current.

7-Segment LED Display
• The 7-segment LED display is an output device

for displaying alpha numeric characters.

• It contains 7 LED segments arranged in a special
form used for displaying alpha numeric
characters and 1 LED used for representing
'decimal point' in decimal number display.

• The LED segments are named A to G and the
decimal point LED segment is named as DP.

• The LED segments A to G and DP should be lit
accordingly to display numbers and characters.

7-Segment LED Display (continued)
• The 7-segment LED displays are available in two different configurations,

namely; Common Anode and Common Cathode.

• In the common anode configuration, the anodes of the 8 segments are
connected commonly whereas in the common cathode configuration,
the cathodes of 8 LED segments are connected commonly.

• Figure illustrates the Common Anode and Cathode configurations.

7-Segment LED Display (continued)
• Based on the configuration of the 7-segment LED unit, the LED segment's

anode or cathode is connected to the port of the processor/controller in
the order 'A' segment to the least significant port pin and DP segment to
the most significant port pin.

• The current flow through each of the LED segments should be limited to
the maximum value supported by the LED display unit.
• The typical value is 20mA.

• The current can be limited by connecting a current limiting resistor to the
anode or cathode of each segment.

• 7-segment LED display is used in low cost embedded applications like
Public telephone call monitoring devices, point of sale terminals, etc.

Optocoupler
• Optocoupler is a solid state device to isolate two parts of a circuit.

• Optocoupler combines an LED and a photo-transistor in a single
housing.

• Figure illustrates the functioning of an optocoupler device.

Fig: An optocoupler device

Optocoupler (continued)
• In electronic circuits, an optocoupler is used for suppressing

interference in data communication, circuit isolation, high voltage
separation, simultaneous separation and signal intensification, etc.

• Optocouplers can be used in either input circuits or in output
circuits.

• Optocoupler is available as ICs from different semiconductor
manufacturers.
• The MCT2M IC from Fairchild semiconductor is an example for

optocoupler IC.

Optocoupler (continued)
• Figure illustrates the usage of optocoupler in input circuit and

output circuit of an embedded system with a microcontroller as the
system core.

Fig: Optocoupler in Input and Output circuit

Relay
• Relay is an electro-mechanical device.

• In embedded application, the Relay unit acts as dynamic path selector
for signals and power.

• The Relay unit contains a relay coil made up of insulated wire on a metal
core and a metal armature with one or more contacts.

• Relay works on electromagnetic principle.
• When a voltage is applied to the relay coil, current flows through the coil,

which in turn generates a magnetic field.

• The magnetic field attracts the armature core and moves the contact point.

• The movement of the contact point changes the power/signal flow path.

Relay (continued)
• Relays are available in different configurations.

• Figure given below illustrates the widely used relay configurations
for embedded applications.

Fig: Relay configurations

Relay (continued)
• The Single Pole Single Throw configuration has only one path for

information flow.

• The path is either open or closed in normal condition.
• For Normally Open Single Pole Single Throw relay, the circuit is

normally open and it becomes closed when the relay is energised.

• For Normally Closed Single Pole Single Throw relay, the circuit is
normally closed and it becomes open when the relay is energised.

• For Single Pole Double Throw configuration, there are two paths for
information flow and they are selected by energising or de-
energising the relay.

Relay (continued)
• The Relay is normally controlled using a relay driver

circuit connected to the port pin of the
processor/controller.

• A transistor is used for building the relay driver
circuit as shown in the figure.

• A free-wheeling diode is used for free-wheeling the
voltage produced in the opposite direction when
the relay coil is de-energised.

• The freewheeling diode is essential for protecting
the relay and the transistor.

Fig: Transistor based Relay driving circuit

• Most of the industrial relays are bulky and require high voltage to operate.

• Special relays called 'Reed' relays are available for embedded application requiring switching of
low voltage DC signals.

Piezo Buzzer
• Piezo buzzer is a piezoelectric device for generating audio indications in embedded

application.

• A piezoelectric buzzer contains a piezoelectric diaphragm which produces audible
sound in response to the voltage applied to it.

• Piezoelectric buzzers are available in two types – 'Self-driving’ and 'External driving’.

• The Self-driving circuit contains all the necessary components to generate sound at a
predefined tone.
• It will generate a tone on applying the voltage.

• External driving piezo buzzers support the generation of different tones.
• The tone can be varied by applying a variable pulse train to the piezoelectric buzzer.

• A piezo buzzer can be directly interfaced to the port pin of the processor/control.

• Depending on the driving current requirements, the piezo buzzer can also be
interfaced using a transistor based driver circuit as in the case of a 'Relay'.

Push Button Switch
• It is an input device.

• Push button switch comes in two configurations, namely 'Push to Make'
and 'Push to Break’.

• In the 'Push to Make' configuration, the switch is normally in the open
state and it makes a circuit contact when it is pushed or pressed.

• In the 'Push to Break' configuration, the switch is normally in the closed
state and it breaks the circuit contact when it is pushed or pressed.

• The push button stays in the 'closed' (For Push to Make type) or 'open'
(For Push to Break type) state as long as it is kept in the pushed state and
it breaks/makes the circuit connection when it is released.

Push Button Switch (continued)
• Push button is used for generating a momentary

pulse.

• In embedded applications, push button is generally
used as reset and start switch and pulse generator.

• The Push button is normally connected to the port pin
of the host processor/controller.

• Depending on the way in which the push button
interfaced to the controller, it can generate either a
'HIGH' pulse or a 'LOW' pulse.

• Figure illustrates how the push button can be used for
generating 'LOW' and 'HIGH' pulses.

Fig: Push button switch configurations

Communication
Interface

Communication Interface
• Communication interface is essential for communicating with various

subsystems of the embedded system and with the external world.

• For an embedded product, the communication interface can be viewed
in two different perspectives:
• Onboard Communication Interface (Device/board level communication

interface)
• E.g.: Serial interfaces like I2C, SPI, UART, 1-Wire, etc and parallel bus interface.

• External Communication Interface (Product level communication interface)

• E.g.: Wireless interfaces like Infrared (IR), Bluetooth (BT), Wireless LAN (Wi-Fi), Radio
Frequency waves (RF), GPRS, etc. and wired interfaces like RS-232C/RS-422/RS-485, USB,
Ethernet IEEE 1394 port, Parallel port, CF-II interface, SDIO, PCMCIA, etc.

Onboard Communication Interfaces
• An embedded system is a combination of different types of

components (chips/devices) arranged on a printed circuit board
(PCB).

• Onboard Communication Interface refers to the different
communication channels/buses for interconnecting the various
integrated circuits and other peripherals within the embedded
system.

• E.g.: Serial interfaces like I2C, SPI, UART, 1-Wire, etc and parallel bus
interface

Inter Integrated Circuit (I2C) Bus
• The Inter Integrated Circuit Bus (I2C or I2C Pronounced 'I square C') is a

synchronous bi-directional half duplex two wire serial interface bus.
• (Half duplex - one-directional communication at a given point of time)

• The concept of I2C bus was developed by Philips Semiconductors in the
early 1980s.

• The original intention of I2C was to provide an easy way of connection
between a microprocessor/microcontroller system and the peripheral
chips in television sets.

• The I2C bus comprise of two bus lines:
• Serial Clock (SCL line) – responsible for generating synchronisation clock pulses

• Serial Data (SDA line) – responsible for transmitting the serial data across devices

Inter Integrated Circuit (I2C) Bus
(continued)
• I2C bus is a shared bus system to which many number of I2C devices can

be connected.

• Devices connected to the I2C bus can act as either 'Master' or 'Slave’.
• The 'Master' device is responsible for controlling the communication by

initiating/terminating data transfer, sending data and generating necessary
synchronisation clock pulses.

• 'Slave' devices wait for the commands from the master and respond upon
receiving the commands.

• 'Master' and 'Slave' devices can act as either transmitter or receiver.

• Regardless whether a master is acting as transmitter or receiver, the
synchronisation clock signal is generated by the 'Master' device only.

• I2C supports multi masters on the same bus.

Inter Integrated Circuit (I2C) Bus
(continued)
• The following bus interface diagram illustrates the connection of

master and slave devices on the I2C bus.

Fig: I2C Bus Interfacing

Inter Integrated Circuit (I2C) Bus
(continued)
• The I2C bus interface is built around an input buffer and an open drain or

collector transistor.

• When the bus is in the idle state, the open drain/collector transistor will be in
the floating state and the output lines (SDA and SCL) switch to the 'High
Impedance' state.

• For proper operation of the bus, both the bus lines should be pulled to the
supply voltage (+5 V for TTL family and +3.3V for CMOS family devices) using
pull-up resistors.
• The typical value of resistors used in pull-up is 2.2K.
• With pull-up resistors, the output lines of the bus in the idle state will be 'HIGH'

• The address of a I2C device is assigned by hardwiring the address lines of the
device to the desired logic level.
• Done at the time of designing the embedded hardware.

Inter Integrated Circuit (I2C) Bus
(continued)
• The sequence of operations for communicating with an I2C slave

device is listed below:
1. The master device pulls the clock line (SCL) of the bus to 'HIGH'

2. The master device pulls the data line (SDA) 'LOW', when the SCL line is
at logic 'HIGH' (This is the 'Start' condition for data transfer)

3. The master device sends the address (7 bit or 10 bit wide) of the
'slave' device to which it wants to communicate, over the SDA line.
◦ Clock pulses are generated at the SCL line for synchronising the bit reception by

the slave device.

◦ The MSB of the data is always transmitted first.

◦ The data in the bus is valid during the 'HIGH' period of the clock signal

Inter Integrated Circuit (I2C) Bus
(continued)

4. The master device sends the Read or Write bit (Bit value = 1 Read operation; Bit
value = 0 Write operation) according to the requirement

5. The master device waits for the acknowledgement bit from the slave device whose
address is sent on the bus along with the Read/ Write operation command.
◦ Slave devices connected to the bus compares the address received with the address assigned

to them

6. The slave device with the address requested by the master device responds by
sending an acknowledge bit (Bit value 1) over the SDA line

7. Upon receiving the acknowledge bit, the Master device sends the 8 bit data to the
slave device over SDA line, if the requested operation is 'Write to device’.
◦ If the requested operation is 'Read from device', the slave device sends data to the master

over the SDA line

8. The master device waits for the acknowledgement bit from the device upon byte
transfer complete for a write operation and sends an acknowledge bit to the Slave
device for a read operation

9. The master device terminates the transfer by pulling the SDA line 'HIGH' when the
clock line SCL is at logic 'HIGH' (Indicating the 'STOP' condition)

Inter Integrated Circuit (I2C) Bus
(continued)
• I2C bus supports three different data rates:
• Standard mode (Data rate up to 100kbits/sec (100 kbps))

• Fast mode (Data rate up to 400kbits/sec (400 kbps))

• High speed mode (Data rate up to 3.4Mbits/sec (3.4 Mbps))

Serial Peripheral Interface (SPI) Bus
• The Serial Peripheral Interface Bus (SPI) is a synchronous bi-directional

full duplex four-wire serial interface bus.

• The concept of SPI was introduced by Motorola.

• SPI is a single master multi-slave system.
• There can be more than one masters, but only one master device can be

active at any given point of time.

• SPI requires four signal lines for communication. They are:
• Master Out Slave In (MOSI) – Signal line carrying the data from master to slave

device. It is also known as Slave Input/SIave Data In (SI/SDI)
• Master In Slave Out (MISO) – Signal line carrying the data from slave to master

device. It is also known as Slave Output (SO/SDO)
• Serial Clock (SCLK) – Signal line carrying the clock signals
• Slave Select (SS) – Signal line for slave device select. It is an active low signal

Serial Peripheral Interface (SPI) Bus
(continued)
• The bus interface diagram shown in the figure illustrates the

connection of master and slave devices on the SPI bus.

Fig: SPI Bus Interfacing

Serial Peripheral Interface (SPI) Bus
(continued)
• The master device is responsible for generating the clock signal.

• It selects the required slave device by asserting the corresponding slave
device's slave select signal 'LOW’.

• The data out line (MISO) of all the slave devices when not selected floats
at high impedance state.

• The serial data transmission through SPI bus is fully configurable.
• SPI devices contain a certain set of registers for holding these configurations.
• The control register holds the various configuration parameters like

master/slave selection for the device, baud rate selection for
communication, clock signal control, etc.

• The status register holds the status of various conditions for transmission
and reception.

Serial Peripheral Interface (SPI) Bus
(continued)
• SPI works on the principle of 'Shift Register’.

• The master and slave devices contain a special shift register for the data to transmit or
receive.
• The size of the shift register is device dependent. Normally it is a multiple of 8.

• During transmission from the master to slave, the data in the master's shift register is
shifted out to the MOSI pin and it enters the shift register of the slave device through
the MOSI pin of the slave device.

• At the same time the shifted out data bit from the slave device's shift register enters
the shift register of the master device through MISO pin.

• In summary, the shift registers of 'master' and 'slave' devices form a circular buffer.

• When compared to I2C, SPI bus is most suitable for applications requiring transfer of
data in ' streams '.

• The only limitation is SPI doesn't support an acknowledgement mechanism.

Universal Asynchronous Receiver
Transmitter (UART)
• Universal Asynchronous Receiver Transmitter (UART) based data

transmission is an asynchronous form of serial data transmission.

• It doesn't require a clock signal to synchronise the transmitting end
and receiving end for transmission.

• Instead it relies upon the pre-defined agreement between the
transmitting device and receiving device.

Universal Asynchronous Receiver
Transmitter (UART) (continued)
• The serial communication settings (Baudrate, number of bits per

byte, parity, number of start bits and stop bit and flow control) for
both transmitter and receiver should be set as identical.

• The start and stop of communication is indicated through inserting
special bits in the data stream.

• While sending a byte of data, a start bit is added first and a stop bit
is added at the end of the bit stream.

• The least significant bit of the data byte follows the 'start' bit.

Universal Asynchronous Receiver
Transmitter (UART) (continued)
• The 'start' bit informs the receiver that a data byte is about to arrive.

• The receiver device starts polling its 'receive line' as per the baud rate settings.
• If the baud rate is 'x' bits per second, the time slot available for one bit is 1/x seconds.

• The receiver unit polls the receiver line at exactly half of the time slot available for the
bit.

• If parity is enabled for communication, the UART of the transmitting device adds a
parity bit (bit value is 1 for odd number of 1s in the transmitted bit stream and 0 for
even number of 1s).

• The UART of the receiving device calculates the parity of the bits received and
compares it with the received parity bit for error checking.

• The UART of the receiving device discards the 'Start', 'Stop' and 'Parity’ bit from the
received bit stream and converts the received serial bit data to a word
• In the case of 8 bits/byte, the byte is formed with the received 8 bits with the first received

bit as the LSB and last received data bit as MSB.

Universal Asynchronous Receiver
Transmitter (UART) (continued)
• For proper communication, the 'Transmit line' of the sending device

should be connected to the 'Receive line' of the receiving device.

• In addition to the serial data transmission function, UART provides
hardware handshaking signal support for controlling the serial data flow.

• UART chips are available from different semiconductor manufacturers.
• National Semiconductor's 8250 UART chip is considered as the standard

setting UART. It was used in the original IBM PC.

• Nowadays most of the microprocessors/controllers are available with
integrated UART functionality and they provide built-in instruction
support for serial data transmission and reception.

Universal Asynchronous Receiver
Transmitter (UART) (continued)
• Figure illustrates the UART interfacing.

Fig: UART Interfacing

1-Wire Interface
• 1-wire interface is an asynchronous half-duplex communication protocol

developed by Maxim Dallas Semiconductor.

• It is also known as Dallas 1-Wire protocol.

• It makes use of only a single signal line (wire) called DQ for
communication and follows the master-slave communication model.

• One of the key feature of 1-wire bus is that it allows power to be sent
along the signal wire as well.

• The slave devices incorporate internal capacitor (typically of the order of
800 pF) to power the device from the signal line.

• The 1-wire interface supports a single master and one or more slave
devices on the bus.

1-Wire Interface (continued)
• The bus interface diagram shown in the figure illustrates the

connection of master and slave devices on the 1-wire bus.

Fig: 1-Wire Interface Bus

1-Wire Interface (continued)
• Every 1-wire device contains a globally unique 64bit identification

number stored within it.

• This unique identification number can be used for addressing
individual devices present on the bus in case there are multiple
slave devices connected to the 1-wire bus.

• The identifier has three parts: an 8 bit family code, a 48 bit serial
number and an 8 bit CRC computed from the first 56 bits.

1-Wire Interface (continued)
• The sequence of operation for communicating with a 1-wire slave device is

listed below:

1. The master device sends a 'Reset' pulse on the 1-wire bus.

2. The slave device(s) present on the bus respond with a 'Presence' pulse.

3. The master device sends a ROM command (Net Address Command followed
by the 64 bit address of the device).
◦ This addresses the slave device(s) to which it wants to initiate a communication.

4. The master device sends a read/write function command to read/write the
internal memory or register of the slave device.

5. The master initiates a Read data/Write data from the device or to the
device.

1-Wire Interface (continued)
• All communication over the 1 -wire bus is master initiated.

• The communication over the 1-wire bus is divided into timeslots of 60
microseconds.

• The 'Reset' pulse occupies 8 time slots. For starting a communication,
the master asserts the reset pulse by pulling the 1-wire bus 'LOW' for at
least 8 time slots (480 µs).

• If a 'slave' device is present on the bus and is ready for communication it
should respond to the master with a 'Presence' pulse, within 60 µs of the
release of the 'Reset' pulse by the master.

• The slave device(s) responds with a 'Presence' pulse by pulling the 1-wire
bus 'LOW' for a minimum of 1 time slot (60 µs).

1-Wire Interface (continued)
• For writing a bit value of 1 on the 1-wire bus, the bus master pulls the

bus for 1 to 15 µs and then releases the bus for the rest of the time slot.
• A bit value of ‘0' is written on the bus by master pulling the bus for a

minimum of 1 time slot (60 µs) and a maximum of 2 time slots (120 µs).

• To Read a bit from the slave device, the master pulls the bus 'LOW' for 1
to 15 µs.
• If the slave wants to send a bit value ‘1' in response to the read request from

the master, it simply releases the bus for the rest of the time slot.

• If the slave wants to send a bit value '0', it pulls the bus 'LOW' for the rest of
the time slot.

Parallel Interface
• The on-board parallel interface is normally used for communicating with peripheral devices

which are memory mapped to the host of the system.

• The host processor/controller of the embedded system contains a parallel bus and the device
which supports parallel bus can directly connect to this bus system.

• The communication through the parallel bus is controlled by the control signal interface
between the device and the host.

• The Control Signals for communication includes Read/Write signal and device select signal.

• The device normally contains a device select line and the device becomes active only when
this line is asserted by the host processor.

• The direction of data transfer (Host to Device or Device to Host) can be controlled through the
control signal lines for 'Read' and 'Write'.

• Only the host processor has control over the 'Read' and 'Write' control signals.

Parallel Interface (continued)
• The device is normally memory mapped to the host processor and

a range of address is assigned to it.

• An address decoder circuit is used for generating the chip select
signal for the device.

• When the address selected by the processor is within the range
assigned for the device, the decoder circuit activates the chip select
line and thereby the device becomes active.

• The processor then can read or write from or to the device by
asserting the corresponding control line (RD\ and WR\
respectively).

Parallel Interface (continued)
• The bus interface diagram shown in the figure illustrates the

interfacing of devices through parallel interface.

Fig: Parallel Interface Bus

Parallel Interface (continued)
• Parallel communication is host processor initiated.

• If a device wants to initiate the communication, it can inform the same
to the processor through interrupts.
• For this, the interrupt line of the device is connected to the interrupt line of

the processor and the corresponding interrupt is enabled in the host
processor.

• The width of the parallel interface is determined by the data bus width
of the host processor.
• It can be 4 bit, 8 bit, 16 bit, 32 bit or 64 bit etc.
• The bus width supported by the device should be same as that of the host

processor.

• Parallel data communication offers the highest speed for data transfer.

External Communication Interfaces
• External Communication Interface refers to the different

communication channels/buses used by the embedded system to
communicate with the external world.

• E.g.: RS-232 C & RS-485, Universal Serial Bus (USB), IEEE 1394
(Firewire), Infrared (IR), Bluetooth (BT), Wi-Fi, ZigBee, GPRS, etc.

RS-232 C & RS-485
• RS-232 C (Recommended Standard number 232, revision C) is a legacy,

full duplex, wired, asynchronous serial communication interface.

• The RS-232 interface was developed by the Electronics Industries
Association (EIA) during the early 1960s.

• RS-232 extends the UART communication signals for external data
communication.

• UART uses the standard TTL/CMOS logic (Logic ‘High’ corresponds to bit
value 1 and Logic ‘Low’ corresponds to bit value 0) for bit transmission
whereas RS-232 follows the EIA standard for bit transmission.
• As per the EIA standard, a logic ‘0’ is represented with voltage between +3

and +25V and a logic ‘1’ is represented with voltage between -3 and -25 V.
• In EIA standard, logic ‘0’ is known as 'Space' and logic ‘1’ as ‘Mark’.

RS-232 C & RS-485 (continued)
• The RS-232 interface defines various handshaking and control

signals for communication apart from the 'Transmit' and 'Receive'
signal lines for data communication.

• RS-232 supports two different types of connectors:
• DB-9: 9-Pin connector

• DB-25: 25-Pin connector.

Fig: DB-9 and DB-25 RS-232 Connector Interface

RS-232 C & RS-485 (continued)
• The pin details for the two connectors are explained in the

following table:

RS-232 C & RS-485 (continued)
• RS-232 is a point-to-point communication interface and the devices

involved in RS-232 communication are called 'Data Terminal
Equipment (DTE)' and 'Data Communication Equipment (DCE)’.

• If no data flow control is required, only TXD and RXD signal lines
and ground line (GND) are required for data transmission and
reception.
• The RXD pin of DCE should be connected to the TXD pin of DTE and

vice versa for proper data transmission.

• If hardware data flow control is required for serial transmission,
various control signal lines of the RS-232 connection are used
appropriately.

RS-232 C & RS-485 (continued)
• The Request To Send (RTS) and Clear To Send (CTS) signals co-ordinate the

communication between DTE and DCE.
• Whenever the DTE has a data to send, it activates the RTS line and if the DCE is

ready to accept the data, it activates the CTS line.

• The Data Terminal Ready (DTR) signal is activated by DTE when it is ready to
accept data.

• The Data Set Ready (DSR) is activated by DCE when it is ready for establishing a
communication link.
• DTR should be in the activated state before the activation of DSR.

• The Data Carrier Detect (DCD) control signal is used by the DCE to indicate the
DTE that a good signal is being received.

• Ring Indicator (RI) is a modem specific signal line for indicating an incoming call
on the telephone line.

RS-232 C & RS-485 (continued)
• As per the EIA standard RS-232 C supports baudrates up to 20Kbps

(Upper limit 19.2 Kbps)
• The commonly used baudrates by devices are 300bps, 1200bps, 2400bps,

9600bps, 11.52Kbps and 19.2Kbps.
• 9600 is the popular baudrate setting used for PC communication.

• The maximum operating distance supported by RS-232 is 50 feet at the
highest supported baudrate.

• Embedded devices contain a UART for serial communication and they
generate signal levels conforming to TTL/CMOS logic.
• A level translator IC like MAX 232 from Maxim Dallas semiconductor is used

for converting the signal lines from the UART to RS-232 signal lines for
communication.

RS-232 C & RS-485 (continued)
• RS-232 supports only point-to-point communication and not suitable for multi-

drop communication.
• It uses single ended data transfer technique for signal transmission and thereby

more susceptible to noise and it greatly reduces the operating distance.

• RS-422 is another serial interface standard from EIA for differential data
communication.
• It supports data rates up to 100Kbps and distance up to 400 ft.

• RS-422 supports multi-drop communication with one transmitter device and
receiver devices up to 10.

• RS-485 is the enhanced version of RS-422 and it supports multi-drop
communication with up to 32 transmitting devices (drivers) and 32 receiving
devices on the bus.
• The communication between devices in the bus uses the 'addressing' mechanism to

identify slave devices.

Universal Serial Bus (USB)
• Universal Serial Bus (USB) is a wired high speed serial bus for data

communication.

• The first version of USB (USB 1.0) was released in 1995.

• The USB communication system follows a star topology with a USB
host at the centre and one or more USB peripheral devices/USB
hosts connected to it.

• A USB host can support connections up to 127, including slave
peripheral devices and other USB hosts.

Universal Serial Bus (USB) (continued)
• Figure illustrates the star topology for USB device connection.

Fig: USB Device Connection topology

Universal Serial Bus (USB) (continued)
• USB transmits data in packet format.

• Each data packet has a standard format.

• The USB communication is a host initiated one.

• The USB host contains a host controller which is responsible for
controlling the data communication, including establishing connectivity
with USB slave devices, packetizing and formatting the data.

• There are different standards for implementing the USB Host Control
interface:
• Open Host Control Interface (OHCI)

• Universal Host Control Interface (UHCI)

Universal Serial Bus (USB) (continued)
• The physical connection between a USB peripheral device and master

device is established with a USB cable.

• The USB cable supports communication distance of up to 5 metres.

• The USB standard uses two different types of connector at the ends of
the USB cable for connecting the USB peripheral device and host device.

• 'Type A' connector is used for upstream connection (connection with
host) and Type B connector is used for downstream connection
(connection with slave device).

• The USB connector present in desktop PCs or laptops are examples for
'Type A' USB connector.

Universal Serial Bus (USB) (continued)
• Both Type A and Type B connectors contain 4 pins for

communication.

• The Pin details for the connectors are listed in the table given
below.

Pin no: Pin name Description

1 VBUS Carries power (5V)

2 D– Differential data carrier line

3 D+ Differential data carrier line

4 GND Ground signal line

Universal Serial Bus (USB) (continued)

Type A Connector Type B Connector Type C Connector

Universal Serial Bus (USB) (continued)
• USB uses differential signals for data transmission.

• It improves the noise immunity.

• USB interface has the ability to supply power to the connecting devices.
• Two connection lines (Ground and Power) of the USB interface are dedicated for

carrying power.
• It can supply power up to 500 mA at 5 V.
• It is sufficient to operate low power devices.

• Mini and Micro USB connectors are available for small form factor devices like
portable media players.

• Each USB device contains a Product ID (PID) and a Vendor ID (VID).
• Embedded into the USB chip by the USB device manufacturer.
• The VID for a device is supplied by the USB standards forum.
• PID and VID are essential for loading the drivers corresponding to a USB device for

communication.

Universal Serial Bus (USB) (continued)
• USB supports four different types of data transfers:

• Control transfer : Used by USB system software to query, configure and issue commands to the USB device.

• Bulk transfer : Used for sending a block of data to a device.

• Supports error checking and correction.

• Transferring data to a printer is an example for bulk transfer.

• Isochronous data transfer : Used for real-time data communication.

• Data is transmitted as streams in real-time.

• Doesn't support error checking and re-transmission of data in case of any transmission loss.

• All streaming devices like audio devices and medical equipment for data collection make use of the isochronous
transfer.

• Interrupt transfer : Used for transferring small amount of data.

• Interrupt transfer mechanism makes use of polling technique to see whether the USB device has any data to send.

• The frequency of polling is determined by the USB device and it varies from 1 to 255 milliseconds.

• Devices like Mouse and Keyboard, which transmits fewer amounts of data, uses Interrupt transfer.

Universal Serial Bus (USB) (continued)
• USB.ORG is the standards body for defining and controlling the

standards for USB communication.

• Presently USB supports different data rates:
• Low-Speed (LS) - 1.5Mbps – USB 1.0

• Full-Speed (FS) - 12Mbps – USB 1.0

• High-Speed (HS) - 480Mbps – USB 2.0

• SuperSpeed (SS) - 5Gbps – USB 3.0

• SuperSpeed+ (SS+) - 10Gbps – USB 3.1, 20 Gbps – USB 3.2

IEEE 1394 (Firewire)
• IEEE 1394 is a wired, isochronous high speed serial communication bus.

• It is also known as High Performance Serial Bus (HPSB).

• The research on 1394 was started by Apple Inc. in 1985 and the standard for
this was coined by IEEE.

• The implementation of 1394 is available from various players with different
names:
• Firewire is the implementation from Apple Inc

• i.LINK is the implementation from Sony Corporation

• Lynx is the implementation from Texas Instruments

IEEE 1394 (Firewire) (continued)
• 1394 supports peer-to-peer connection and point-to-multipoint communication

allowing 63 devices to be connected on the bus in a tree topology.

• 1394 is a wired serial interface and it can support a cable length of up to 15 feet for
interconnection.

• The 1394 standard supports a data rate of 400 to 3200 Mbits/second.

• The IEEE 1394 uses differential data transfer.

• It increases the noise immunity.

• The interface cable supports 3 types of connectors, namely; 4-pin connector, 6-pin
connector (alpha connector) and 9 pin connector (beta connector).

• The 6 and 9 pin connectors carry power also to support external devices.

• It can supply unregulated power in the range of 24 to 30V.

IEEE 1394 (Firewire) (continued)

4-pin and 6-pin Connectors 9-pin Connector

IEEE 1394 (Firewire) (continued)
• The table given below illustrates the pin details for 4, 6 and 9 pin

connectors.

IEEE 1394 (Firewire) (continued)
• There are two differential data transfer lines A and B per connector.

• In a 1394 cable, normally the differential lines of A are connected to B
(TPA+ to TPB+ and TPA– to TPB–) and vice versa.

• 1394 is a popular communication interface for connecting embedded
devices like Digital Camera, Camcorder, Scanners to desktop computers
for data transfer and storage.

• IEEE 1394 doesn't require a host for communicating between devices.
• For example, you can directly connect a scanner with a printer for printing.

• The data rate supported by 1394 is far higher than the one supported by
USB2.0 interface.

• The 1394 hardware implementation is much costlier than USB
implementation.

Infrared (IrDA)
• Infrared (IrDA) is a serial, half duplex, line of sight based wireless technology

for data communication between devices.

• It is in use from the olden days of communication and you may be very familiar
with it.
• E.g.: The remote control of TV, VCD player, etc. works on Infrared.

• Infrared communication technique uses infrared waves of the electromagnetic
spectrum for transmitting the data.

• It supports point-point and point-to-multipoint communication, provided all
devices involved in the communication are within the line of sight.

• The typical communication range for IrDA lies in the range 10 cm to 1 m.

• The range can be increased by increasing the transmitting power of the IR
device.

Infrared (IrDA) (continued)
• IR supports data rates ranging from 9600bits/second to 16Mbps.

• Depending on the speed of data transmission IR is classified into:
• Serial IR (SIR) – supports data rates ranging from 9600bps to 115.2kbps.

• Medium IR (MIR) – supports data rates of 0.576Mbps and 1.152Mbps.

• Fast IR (FIR) – supports data rates up to 4Mbps.

• Very Fast IR (VFIR) – supports high data rates up to 16Mbps.

• Ultra Fast IR (UFIR) – targeted to support a data rate up to 100Mbps.

Infrared (IrDA) (continued)
• IrDA communication involves a transmitter unit for transmitting the data

over IR and a receiver for receiving the data.

• Infrared Light Emitting Diode (LED) is the IR source for transmitter and at
the receiving end a photodiode acts as the receiver.

• Both transmitter and receiver unit will be present in each device
supporting IrDA communication for bidirectional data transfer.
• Such IR units are known as 'Transceiver’.

• Certain devices like a TV remote control always require unidirectional
communication and so they contain either the transmitter or receiver
unit.
• The remote control unit contains the transmitter unit and TV contains the

receiver unit.

Infrared (IrDA) (continued)
• Infrared Data Association (IrDA) is the regulatory body responsible for defining

and licensing the specifications for IR data communication.

• IR communication has two essential parts: a physical link part and a protocol
part.
• The physical link is responsible for the physical transmission of data between

devices supporting IR communication
• Protocol part is responsible for defining the rules of communication.

• The physical link works on the wireless principle making use of Infrared for
communication.

• The IrDA specifications include the standard for both physical link and protocol
layer.

• The IrDA control protocol contains implementations for Physical Layer (PHY),
Media Access Control (MAC) and Logical Link Control (LLC).

Infrared (IrDA) (continued)
• IrDA is a popular interface for file exchange and data transfer in low

cost devices.

• IrDA was the prominent communication channel in mobile phones
before Bluetooth's existence.

Bluetooth (BT)
• Bluetooth is a low cost, low power, short range wireless technology

for data and voice communication.

• Bluetooth was first proposed by Ericsson in 1994.

• Bluetooth operates at 2.4GHz of the Radio Frequency spectrum and
uses the Frequency Hopping Spread Spectrum (FHSS) technique for
communication.

• It supports a data rate of up to 1Mbps and a range of approximately
30 feet for data communication.

Bluetooth (BT) (continued)
• Bluetooth communication has two essential parts – a physical link

part and a protocol part.
• The physical link is responsible for the physical transmission of data

between devices supporting Bluetooth communication

• The protocol part is responsible for defining the rules of
communication.

• The physical link works on the wireless principle making use of RF
waves for communication.

• Bluetooth enabled devices essentially contain a Bluetooth wireless
radio for the transmission and reception of data.

Bluetooth (BT) (continued)
• The rules governing the Bluetooth communication is implemented in the

'Bluetooth protocol stack’.
• The Bluetooth communication IC holds the stack.

• Each Bluetooth device will have a 48 bit unique identification number.

• Bluetooth communication follows packet based data transfer.
• Bluetooth supports point-to-point (device to device) and point-to-multipoint

(device to multiple device broadcasting) wireless communication.

• The point-to-point communication follows the master-slave relationship.

• A Bluetooth device can function as either master or slave.

• When a network is formed with one Bluetooth device as master and more than
one device as slaves, it is called a Piconet.
• A Piconet supports a maximum of seven slave devices.

Bluetooth (BT) (continued)
• Bluetooth is the favourite choice for short range data communication in handheld

embedded devices.

• Bluetooth technology is very popular among cell phone users as they are the easiest
communication channel for transferring ringtones, music files, pictures, media files,
etc. between neighbouring Bluetooth enabled phones.

• The Bluetooth standard specifies the minimum requirements that a Bluetooth device
must support for a specific usage scenario.

• The Generic Access Profile (GAP) defines the requirements for detecting a Bluetooth
device and establishing a connection with it.
• All other specific usage profiles are based on GAP.

• Serial Port Profile (SPP) for serial data communication, File Transfer Profile (FTP) for file
transfer between devices, Human Interface Device (HID) for supporting human interface
devices like keyboard and mouse are examples for Bluetooth profiles.

• The specifications for Bluetooth communication is defined and licensed by the
standards body 'Bluetooth Special Interest Group (SIG)'.

Wi-Fi
• Wi-Fi or Wireless Fidelity is the popular wireless communication technique for

networked communication of devices.

• Wi-Fi follows the IEEE 802.11 standard.

• Wi-Fi is intended for network communication and it supports Internet Protocol
(IP) based communication.

• It is essential to have device identities in a multipoint communication to
address specific devices for data communication.

• In an IP based communication each device is identified by an IP address, which
is unique to each device on the network.

Wi-Fi (continued)
• Wi-Fi based communications require an intermediate agent called Wi-Fi

router/Wireless Access point to manage the communications.

• The Wi-Fi router is responsible for restricting the access to a network, assigning
IP address to devices on the network, routing data packets to the intended
devices on the network.

• Wi-Fi enabled devices contain a wireless adaptor for transmitting and receiving
data in the form of radio signals through an antenna.

• The hardware part of it is known as Wi-Fi Radio.

• Wi-Fi operates at 2.4 GHz or 5 GHz of radio spectrum and they co-exist with
other ISM band devices like Bluetooth.

Wi-Fi (continued)
• Figure illustrates the typical interfacing of devices in a Wi-Fi

network.

Fig: Wi-Fi Network

Wi-Fi (continued)
• For communicating with devices over a Wi-Fi network, the device when

its Wi-Fi radio is turned ON, searches the available Wi-Fi network in its
vicinity and lists out the Service Set Identifier (SSID) of the available
networks.

• If the network is security enabled, a password may be required to
connect to a particular SSID.

• Wi-Fi employs different security mechanisms like Wired Equivalency
Privacy (WEP), Wireless Protected Access (WPA), etc. for securing the
data communication.

• Wi-Fi supports data rates ranging from 1 Mbps to 1.73 Gbps depending
on the standards (802.11a/b/g/n) and access/modulation method.

• Depending on the type of antenna and usage location (indoor/outdoor),
Wi-Fi offers a range of 100 to 300 feet.

ZigBee
• ZigBee is a low power, low cost, wireless network communication protocol

based on the IEEE 802.15.4-2006 standard.

• ZigBee is targeted for low power, low data rate and secure applications for
Wireless Personal Area Networking (WPAN).

• The ZigBee specifications support a robust mesh network containing multiple
nodes.

• This networking strategy makes the network reliable by permitting messages to
travel through a number of different paths to get from one node to another.

• ZigBee operates worldwide at the unlicensed bands of Radio spectrum, mainly
at 2.400 to 2.484 GHz, 902 to 928 MHz and 868.0 to 868.6 MHz.

• ZigBee supports an operating distance of up to 100 metres and a data rate of
20 to 250 Kbps.

ZigBee (continued)
• In the ZigBee terminology, each ZigBee device falls under any one of the

following ZigBee device category:

• ZigBee Coordinator (ZC)/Network Coordinator
• The ZigBee coordinator acts as the root of the ZigBee network.
• The ZC is responsible for initiating the ZigBee network and it has the capability to

store information about the network.

• ZigBee Router (ZR)/Full function Device (FFD)
• Responsible for passing information from device to another device or to another

ZR.

• ZigBee End Device (ZED)/Reduced Function Device (RFD):
• End device containing ZigBee functionality for data communication.
• It can talk only with a ZR or ZC and doesn't have the capability to act as a mediator

for transferring data from one device to another.

ZigBee (continued)
• The diagram shown in figure gives an overview of ZC, ZED and ZR in

a ZigBee network.

Fig: A ZigBee network model

ZigBee (continued)
• ZigBee is primarily targeting application areas like home & industrial

automation, energy management, home control/security,
medical/patient tracking, logistics & asset tracking and sensor networks
& active RFID.

• Automatic Meter Reading (AMR), smoke detectors, wireless telemetry,
HVAC control, heating control, lighting controls, environmental controls,
etc. are examples for applications which can make use of the ZigBee
technology.

• The specifications for ZigBee is developed and managed by the ZigBee
Alliance, a non-profit consortium of leading semiconductor
manufacturers, technology providers, OEMs and end-users worldwide.

General Packet Radio Service (GPRS)
• General Packet Radio Service (GPRS) is a communication technique for

transferring data over a mobile communication network like GSM.

• Data is sent as packets in GPRS communication.

• The transmitting device splits the data into several related packets.

• At the receiving end the data is re-constructed by combining the
received data packets.

• GPRS supports a theoretical maximum transfer rate of 171.2 kbps.

• In GPRS communication, the radio channel is concurrently shared
between several users instead of dedicating a radio channel to a cell
phone user.

General Packet Radio Service (GPRS)
(continued)
• The GPRS communication divides the channel into 8 timeslots and transmits data over

the available channel.

• GPRS supports Internet Protocol (IP), Point to Point Protocol (PPP) and X.25 protocols
for communication.

• GPRS is mainly used by mobile enabled embedded devices for data communication.

• The device should support the necessary GPRS hardware like GPRS modem and GPRS
radio.

• To accomplish GPRS based communication, the carrier network also should have
support for GPRS communication.

• GPRS is an old technology and it is being replaced by new generation data
communication techniques like EDGE, High Speed Downlink Packet Access (HSDPA),
Long Term Evolution (LTE), etc. which offers higher bandwidths for communication.

Embedded Firmware

Embedded Firmware
• Embedded firmware refers to the control algorithm (Program instructions) and or the

configuration settings that an embedded system developer dumps into the code
(Program) memory of the embedded system.

• It is an un-avoidable part of an embedded system.

• There are various methods available for developing the embedded firmware:

1. Write the program in high level languages like Embedded C/C++ using an Integrated
Development Environment (IDE).
◦ The IDE will contain an editor, compiler, linker, debugger, simulator, etc. IDES are different

for different family of processors/controllers.
◦ For example, Keil µVision 4 IDE is used for all family members of 8051 microcontroller,

since it contains the generic 8051 compiler C51.

2. Write the program in Assembly language using the instructions supported by your
application's target processor/controller.

Embedded Firmware (continued)
• The program written in high level language or assembly code should be converted into

a processor understandable machine code before loading it into the program memory.

• The process of converting the program written in either a high level language or
processor/controller specific Assembly code to machine readable binary code is called
'HEX File Creation’.

• The methods used for 'HEX File Creation' is different depending on the programming
techniques used.
• If the program is written in Embedded C/C++ using an IDE, the cross compiler included in

the IDE converts it into corresponding processor/controller understandable 'HEX File’.

• If Assembly language based programming technique is used, the utilities supplied by the
processor/controller vendors can be used to convert the source code into 'HEX File’.

• Also third party tools are available, which may be of free of cost, for this conversion.

Embedded Firmware (continued)
• For a beginner in the embedded software field, it is strongly recommended to

use the high level language based development technique.
• Writing codes in a high level language is easy

• The code written in high level language is highly portable
• The same code can be used to run on different processor/controller with little or less modification.

• The only thing you need to do is re-compile the program with the required processor's IDE, after
replacing the include files for that particular processor.

• The programs written in high level languages are not developer dependent.
• Any skilled programmer can trace out the functionalities of the program by just having a look at the

program.

• It will be much easier if the source code contains necessary comments and documentation lines.

• It is very easy to debug and the overall system development time will be reduced to
a greater extent.

Embedded Firmware (continued)
• The embedded software development process in assembly language is tedious and

time consuming.

• The developer needs to know about all the instruction sets of the processor/controller
or at least he should carry an instruction set reference manual with him.

• A programmer using assembly language technique writes the program according to
his view and taste.

• Often he may be writing a method or functionality which can be achieved through a
single instruction as an experienced person's point of view, by two or three
instructions in his own style.

• So the program will be highly dependent on the developer.

• It is very difficult for a second person to understand the code written in Assembly
even if it is well documented.

Embedded Firmware (continued)
• Two types of control algorithm design exist in embedded firmware

development:
• The first type of control algorithm development is known as the infinite loop

or 'super loop' based approach, where the control flow runs from top to
bottom and then jumps back to the top of the program in a conventional
procedure.
• It is similar to the while (1) { }; based technique in C.

• The second method deals with splitting the functions to be executed into
tasks and running these tasks using a scheduler which is part of a General
Purpose or Real Time Embedded Operating System (GPOS/RTOS).

Other System
Components

Other System Components
• The other system components refer to the components/circuits/ICs

which are necessary for the proper functioning of the embedded
system.

• Some of these circuits may be essential for the proper functioning
of the processor/controller and firmware execution.

• E.g.: Watchdog timer, Reset IC (or passive circuit), brown-out
protection IC (or passive circuit), etc.

• Some of the controllers or SoCs integrate these components within
a single IC and doesn't require such components externally
connected to the chip for proper functioning.

Reset Circuit
• The reset circuit is essential to ensure that the device is not operating at

a voltage level where the device is not guaranteed to operate, during
system power ON.

• The reset signal brings the internal registers and the different hardware
systems of the processor/controller to a known state and starts the
firmware execution from the reset vector
• Normally from vector address 0x0000 for conventional

processors/controllers.

• The reset signal can be either active high or active low.

• Since the processor operation is synchronised to a clock signal, the reset
pulse should be wide enough to give time for the clock oscillator to
stabilise before the internal reset state starts.

Reset Circuit (continued)
• The reset signal to the processor can be applied at power ON

through an external passive reset circuit comprising a Capacitor and
Resistor or through a standard Reset IC like MAX810 from Maxim
Dallas.

• Select the reset IC based on the type of reset signal and logic level
(CMOS/TTL) supported by the processor/controller in use.

• Some microprocessors/controllers contain built-in internal reset
circuitry and they don't require external reset circuitry.

Reset Circuit (continued)
• Figure illustrates a resistor capacitor based passive reset circuit for active

high and low configurations.

• The reset pulse width can be adjusted by changing the resistance value R
and capacitance value C.

Fig: RC based reset circuit

Brown-out Protection Circuit
• Brown-out protection circuit prevents the processor/controller

from unexpected program execution behaviour when the supply
voltage to the processor/controller falls below a specified voltage.

• It is essential for battery powered devices since there are greater
chances for the battery voltage to drop below the required
threshold.
• The processor behaviour may not be predictable if the supply voltage

falls below the recommended operating voltage.

• It may lead to situations like data corruption.

Brown-out Protection Circuit (continued)
• A brown-out protection circuit holds the processor/controller in

reset state, when the operating voltage falls below the threshold,
until it rises above the threshold voltage.

• Certain processors/controllers support built in brown-out
protection circuit which monitors the supply voltage internally.

• If the processor/controller doesn't integrate a built-in brown-out
protection circuit, the same can be implemented using external
passive circuits or supervisor ICs.

Brown-out Protection Circuit (continued)
• Figure illustrates a brown-out circuit implementation using Zener

diode and transistor for processor/controller with active low Reset
logic.

• The Zener diode DZ and transistor Q forms the heart of this circuit.

• The transistor conducts always when the supply voltage VCC is
greater than that of the sum of VBE and VZ (Zener voltage).

• The transistor stops conducting when the supply voltage falls
below the sum of VBE and VZ .

• Select the Zener diode with required voltage for setting the low
threshold value for VCC.

• The values of R1, R2, and R3 can be selected based on the
electrical characteristics of the transistor in use.

• Microprocessor Supervisor ICs like DS1232 from Maxim also
provides Brown-out protection.

Fig: Brown-out protection
circuit with Active low output

Oscillator Unit
• A microprocessor/microcontroller is a digital device made up of

digital combinational and sequential circuits.

• The instruction execution of a microprocessor/controller occurs in
sync with a clock signal.

• The oscillator unit of the embedded system is responsible for
generating the precise clock for the processor.
• Analogous to the heart in living beings which produces heart beats.

• Certain processors/controllers integrate a built-in oscillator unit and
simply require an external ceramic resonator/quartz crystal for
producing the necessary clock signals.

Oscillator Unit (continued)
• Quartz crystals and ceramic resonators are equivalent in operation, however they

possess physical difference.

• A quartz crystal is normally mounted in a hermetically sealed metal case with two
leads protruding out of the case.

• Certain devices may not contain a built-in oscillator unit and require the clock pulses
to be generated and supplied externally.
• Quartz crystal Oscillators are available in the form of chips and they can be used for

generating the clock pulses in such cases.

• The speed of operation of a processor is primarily dependent on the clock frequency.
• However we cannot increase the clock frequency blindly for increasing the speed of

execution.

• The logical circuits lying inside the processor always have an upper threshold value for the
maximum clock at which the system can run, beyond which the system becomes unstable
and non functional.

Oscillator Unit (continued)
• The total system power consumption is directly proportional to the

clock frequency.
• The power consumption increases with increase in clock frequency.

• The accuracy of program execution depends on the accuracy of the
clock signal.

• The accuracy of the crystal oscillator or ceramic resonator is
normally expressed in terms of +/-ppm (Parts per million).

Oscillator Unit (continued)
• Figure illustrates the usage of quartz crystal/ceramic resonator and

external oscillator chip for clock generation.

Fig: Oscillator circuitry using quartz crystal and quartz crystal oscillator

Real-Time Clock (RTC)
• Real-Time Clock (RTC) is a system component responsible for keeping track of

time.

• RTC holds information like current time (In hours, minutes and seconds) in 12
hour/24 hour format, date, month, year, day of the week, etc. and supplies
timing reference to the system.

• RTC is intended to function even in the absence of power.

• RTCs are available in the form of Integrated Circuits from different
semiconductor manufacturers like Maxim/Dallas, ST Microelectronics etc.

• The RTC chip contains a microchip for holding the time and date related
information and backup battery cell for functioning in the absence of power, in
a single IC package.

• The RTC chip is interfaced to the processor or controller of the embedded
system.

Real-Time Clock (RTC) (continued)
• For Operating System based embedded devices, a timing reference is

essential for synchronising the operations of the OS kernel.

• The RTC can interrupt the OS kernel by asserting the interrupt line of the
processor/controller to which the RTC interrupt line is connected.

• The OS kernel identifies the interrupt in terms of the Interrupt Request
(IRQ) number generated by an interrupt controller.

• One IRQ can be assigned to the RTC interrupt and the kernel can perform
necessary operations like system date time updation, managing software
timers, etc. when an RTC timer tick interrupt occurs.

• The RTC can be configured to interrupt the processor at predefined
intervals or to interrupt the processor when the RTC register reaches a
specified value (used as alarm interrupt).

Watchdog Timer
• A watchdog timer, or simply a watchdog, is a hardware timer for

monitoring the firmware execution and resetting the system
processor/microcontroller when the program execution hangs up.

• Depending on the internal implementation, the watchdog timer
increments or decrements a free running counter with each clock
pulse and generates a reset signal to reset the processor if the
count reaches zero for a down counting watchdog, or the highest
count value for an up counting watchdog.

Watchdog Timer (continued)
• If the watchdog counter is in the enabled state, the firmware can

write a zero (for up counting watchdog implementation) to it before
starting the execution of a piece of code (which is susceptible to
execution hang up) and the watchdog will start counting.

• If the firmware execution doesn't complete due to malfunctioning,
within the time required by the watchdog to reach the maximum
count, the counter will generate a reset pulse and this will reset the
processor.

• If the firmware execution completes before the expiration of the
watchdog timer you can reset the count by writing a 0 (for an up
counting watchdog timer) to the watchdog timer register.

Watchdog Timer (continued)
• Most of the processors implement watchdog as a built-in component and provides

status register to control the watchdog timer (like enabling and disabling watchdog
functioning) and watchdog timer register for writing the count value.

• If the processor/controller doesn't contain a built in watchdog timer, the same can be
implemented using an external watchdog timer IC circuit.

• The external watchdog timer uses hardware logic for enabling/disabling, resetting the
watchdog count, etc. instead of the firmware based 'writing' to the status and
watchdog timer register.

• The Microprocessor supervisor IC DS1232 integrates a hardware watchdog timer in it.

• In modern systems running on embedded operating systems, the watchdog can be
implemented in such a way that when a watchdog timeout occurs, an interrupt is
generated instead of resetting the processor.

• The interrupt handler for this handles the situation in an appropriate fashion.

Watchdog Timer (continued)
• Figure illustrates the implementation of an external watchdog timer based

microprocessor supervisor circuit for a small scale embedded system.

Fig: Watchdog timer for firmware execution supervision

PCB and Passive Components
• Printed Circuit Board (PCB) is the backbone of every embedded system.

• After finalising the components and the inter-connection among them, a schematic
design is created and according to the schematic, the PCB is fabricated.

• PCB acts as a platform for mounting all the necessary components as per the design
requirement.

• Also it acts as a platform for testing the embedded firmware.

• Apart from the subsystems mentioned already, passive electronic components like
resistor, capacitor, diodes, etc. are also found on the board.
• They are the co-workers of various chips contained in the embedded hardware.

• They are very essential for the proper functioning of your embedded system.

• For example for providing a regulated ripple-free supply voltage to the system, a regulator
IC and spike suppressor filter capacitors are very essential.

References
1. Shibu K V, “Introduction to Embedded Systems”, Tata McGraw Hill, 2009.

2. Raj Kamal, “Embedded Systems: Architecture and Programming”, Tata
McGraw Hill, 2008.

MODULE – 4

Embedded System
Design Concepts

ARM MICROCONTROLLER & EMBEDDED SYSTEMS (17EC62)

Characteristics and
Quality Attributes of
Embedded Systems

Characteristics of Embedded Systems
• Embedded systems possess certain specific characteristics.
• These characteristics are unique to each embedded system.

• Some of the important characteristics of an embedded system
are:
1. Application and domain specific
2. Reactive and Real Time
3. Operates in harsh environments
4. Distributed
5. Small size and weight
6. Power concerns

Characteristics of Embedded Systems
(continued)

1. Application and Domain Specific
• Each embedded system has certain functions to perform and they

are developed in such a manner to do the intended functions
only.

• They cannot be used for any other purpose.
• For example, the embedded control unit of a microwave oven cannot be

replaced with an air conditioner's embedded control unit, because the
embedded control units of microwave oven and air conditioner are
specifically designed to perform certain specific tasks.

• Also an embedded control unit developed for a particular domain, say
telecom, cannot be replaced with another control unit designed to serve
another domain like consumer electronics.

Characteristics of Embedded Systems
(continued)

2. Reactive and Real Time
• Embedded systems are in constant interaction with the real world

through sensors and user-defined input devices which are
connected to the input port of the system.

• Any changes happening in the real world (which is called an
Event) are captured by the sensors or input devices in Real Time
and the control algorithm running inside the unit reacts in a
designed manner to bring the controlled output variables to the
desired level.

• Embedded systems produce changes in output in response to the
changes in the input.
• So they are generally referred as Reactive Systems.

Characteristics of Embedded Systems
(continued)
• Real Time System operation means the timing behaviour of

the system should be deterministic.
• The system should respond to requests or tasks in a known amount

of time.

• A Real Time system should not miss any deadlines for tasks
or operations.

• It is not necessary that all embedded systems should be Real
Time in operations.

• Embedded applications or systems which are mission critical,
like flight control systems, Antilock Brake Systems (ABS), etc.
are examples of Real Time systems.

Characteristics of Embedded Systems
(continued)

3. Operates in Harsh Environment
• The environment in which the embedded system deployed may be a

dusty one or a high temperature zone or an area subject to vibrations
and shock.

• Systems placed in such areas should be capable to withstand all these
adverse operating conditions.

• The design should take care of the operating conditions of the area
where the system is going to implement.
• For example, if the system needs to be deployed in a high temperature zone, then

all the components used in the system should be of high temperature grade.
• Also proper shock absorption techniques should be provided to systems which are

going to be commissioned in places subject to high shock.

• Power supply fluctuations, corrosion and component aging, etc. are
the other factors that need to be taken into consideration for
embedded systems to work in harsh environments.

Characteristics of Embedded Systems
(continued)

4. Distributed

• The term distributed means that embedded systems may be a part of larger systems.

• Many numbers of such distributed embedded systems form a single large embedded
control unit.
• For example, an automatic vending machine.

• It contains a card reader (for pre-paid vending systems), a vending unit, etc.
• Each of them are independent embedded units but they work together to perform the overall vending

function.

• Another example is the Automatic Teller Machine (ATM).

• It contains a card reader embedded unit, responsible for reading and validating the user's ATM card,
transaction unit for performing transactions, a currency counter for dispatching/vending currency to the
authorised person and a printer unit for printing the transaction details.

• We can visualise these as independent embedded systems, but they work together to achieve a
common goal.

• Another typical example of a distributed embedded system is the Supervisory Control And Data
Acquisition (SCADA) system used in Control & Instrumentation applications, which contains physically
distributed individual embedded control units connected to a supervisory module.

Characteristics of Embedded Systems
(continued)

5. Small Weight and Size

• Product aesthetics is an important factor in choosing a product.

• For example, when you plan to buy a new mobile phone, you may make a
comparative study on the pros and cons of the products available in the
market.
• Definitely the product aesthetics (size, weight, shape, style, etc.) will be one of the

deciding factors to choose a product.

• People believe in the phrase "Small is beautiful".

• Moreover it is convenient to handle a compact device than a bulky product.

• In embedded domain also compactness is a significant deciding factor.
• Most of the application demands small sized and low weight products.

Characteristics of Embedded Systems
(continued)

6. Power Concerns
• Power management is another important factor that needs to be considered

in designing embedded systems.
• Embedded systems should be designed in such a way as to minimise the

heat dissipation by the system.
• The production of high amount of heat demands cooling requirements like

cooling fans which in turn occupies additional space and make the system
bulky.

• Select the design according to the low power components like low dropout
regulators, and controllers/processors with power saving modes.

• Also power management is a critical constraint in battery operated
application.
• The more the power consumption the less is the battery life.

Quality Attributes of Embedded Systems
• Quality attributes are the non-functional requirements that

need to be documented properly in any system design.

• If the quality attributes are more concrete and measurable
it will give a positive impact on the system development
process and the end product.

• The quality attributes in any embedded system
development are broadly classified into two:
• Operational Quality Attributes
• Non-Operational Quality Attributes

Operational Quality Attributes
• The operational quality attributes represent the relevant

quality attributes related to the embedded system when it is in
the operational mode or 'online' mode.

• The important operational quality attributes are:
1. Response
2. Throughput
3. Reliability
4. Maintainability
5. Security
6. Safety

Operational Quality Attributes
(continued)

1. Response
• Response is a measure of quickness of the system.
• It gives you an idea about how fast the system is tracking the changes in

input variables.
• Most of the embedded systems demand fast response which should be

almost Real Time.
• For example, an embedded system deployed in flight control application should respond

in a Real Time manner.
• Any response delay in the system will create potential damages to the safety of the flight

as well as the passengers.

• It is not necessary that all embedded systems should be Real Time in
response.
• For example, the response time requirement for an electronic toy is not at all time-critical.
• There is no specific deadline that this system should respond within this particular

timeline.

Operational Quality Attributes
(continued)

2. Throughput
• Throughput deals with the efficiency of a system.
• Throughput can be defined as the rate of production or operation of a

defined process over a stated period of time.
• The rates can be expressed in terms of units of products, batches

produced, or any other meaningful measurements.
• In the case of a Card Reader, throughput means how many transactions the

Reader can perform in a minute or in an hour or in a day.

• Throughput is generally measured in terms of 'Benchmark’.
• A 'Benchmark' is a reference point by which something can be measured.

• Benchmark can be a set of performance criteria that a product is expected to
meet or a standard product that can be used for comparing other products of the
same product line.

Operational Quality Attributes
(continued)

3. Reliability
• Reliability is a measure of how much percentage you can rely

upon the proper functioning of the system or what is the
percentage susceptibility of the system to failures.

• System reliability is defined using two terms:
• Mean Time Between Failures (MTBF)
• Gives the frequency of failures in hours/weeks/months.

• Mean Time To Repair (MTTR)
• Specifies how long the system is allowed to be out of order following a

failure.

• For an embedded system with critical application need, it should be of
the order of minutes.

Operational Quality Attributes
(continued)

4. Maintainability
• Maintainability deals with support and maintenance to the end user

or client in case of technical issues and product failures or on the basis
of a routine system check-up.

• Reliability and maintainability are considered as two complementary
disciplines.

• A more reliable system means a system with less corrective
maintainability requirements and vice versa.

• Maintainability can be broadly classified into two categories:
• Scheduled or Periodic Maintenance (preventive maintenance)
• For example, replacing the cartridge of a printer after each 'n' number of

printouts to get quality prints.
• Maintenance to unexpected failures (corrective maintenance)
• For example, repairing the printer if the paper feeding part fails.

Operational Quality Attributes
(continued)
• Maintainability is also an indication of the availability of the

product for use.

• In any embedded system design, the ideal value for availability is
expressed as

𝑀𝑇𝐵𝐹
𝐴𝑖 =

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅
where

𝐴𝑖 = Availability in the ideal condition

𝑀𝑇𝐵𝐹 = Mean Time Between Failures

𝑀𝑇𝑇𝑅 = Mean Time To Repair

Operational Quality Attributes
(continued)

Numerical Example 1
• The Mean Time Between Failure (MTBF) of an embedded product is 4

months and the Mean Time To Repair (MTTR) of the product is 2 weeks.
What is the availability of the product?

• Solution:

Given 𝑀𝑇𝐵𝐹 = 4 months = 120 days

and 𝑀𝑇𝑇𝑅 = 2 weeks = 14 days

We know that 𝑖 𝐴 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇
𝑅

𝐴 𝑖
= 120 120

=
120+14 134

𝐴𝑖 = 0.8955 or 89.55%

Operational Quality Attributes
(continued)

Numerical Example 2
• The availability of an embedded product is 90%. The Mean Time Between Failure

(MTBF) of the product is 30 days. What is the Mean Time To Repair (MTTR) in
days/hours for the product?

• Solution:
Given 𝐴𝑖 = 90% = 0.9
and MTBF = 30 days

We know that 𝑖 𝐴 =
𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹+𝑀𝑇𝑇
𝑅 𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅 = 𝑀𝑇𝐵𝐹

𝐴𝑖

𝐴𝑖
𝑀𝑇𝑇𝑅 = 𝑀𝑇𝐵𝐹 − 𝑀𝑇𝐵𝐹

𝑀𝑇𝑇𝑅 = 30 − 30
0.9

𝑀𝑇𝑇𝑅 = 3.33 𝑑𝑎𝑦𝑠 𝑜𝑟 80 ℎ𝑜𝑢𝑟𝑠

Operational Quality Attributes
(continued)

5. Security
• Confidentiality, Integrity, and Availability are the three major measures of information security.

• Confidentiality deals with the protection of data and application from unauthorised disclosure.

• Integrity deals with the protection of data and application from unauthorised modification.

• Availability deals with protection of data and application from unauthorized users.

• A very good example of the 'Security' aspect in an embedded product is a Personal Digital Assistant

• (PDA).

• The PDA can be either a shared resource (e.g. PDAs used in LAB setups) or an individual one.

• If it is a shared one there should be some mechanism in the form of a user name and password to access
into a particular person's profile—This is an example of 'Availability’.

• Also all data and applications present in the PDA need not be accessible to all users.

• Some of them are specifically accessible to administrators only.

• For achieving this, Administrator and user levels of security should be implemented —An example of
Confidentiality.

• Some data present in the PDA may be visible to all users but there may not be necessary permissions to
alter the data by the users.

• That is Read Only access is allocated to all users—An example of Integrity.

Operational Quality Attributes
(continued)

6. Safety
• Safety deals with the possible damages that can happen to the

operators, public and the environment due to the breakdown of an
embedded system or due to the emission of radioactive or hazardous
materials from the embedded products.

• The breakdown of an embedded system may occur due to a hardware
failure or a firmware failure.

• Safety analysis is a must in product engineering to evaluate the
anticipated damages and determine the best course of action to bring
down the consequences of the damages to an acceptable level.

• Some of the safety threats are sudden (like product breakdown) and
some of them are gradual (like hazardous emissions from the product).

Non-Operational Quality Attributes
• The quality attributes that needs to be addressed for the

product 'not’ on the basis of operational aspects are
grouped under this category.

• The important non-operational quality attributes are:
1. Testability & Debug-ability
2. Evolvability
3. Portability
4. Time-to-prototype and market
5. Per unit and total cost

Non-Operational Quality Attributes
(continued)

1. Testability & Debug-ability
• Testability deals with how easily one can test his/her design, application and

by which means he/she can test it.
• For an embedded product, testability is applicable to both the embedded

hardware and firmware.
• Embedded hardware testing ensures that the peripherals and the total hardware

functions in the desired manner, whereas firmware testing ensures that the
firmware is functioning in the expected way.

• Debug-ability is a means of debugging the product as such for figuring out
the probable sources that create unexpected behaviour in the total system.
• Debug-ability has two aspects in the embedded system development context,

namely, hardware level debugging and firmware level debugging.
• Hardware debugging is used for figuring out the issues created by hardware

problems whereas firmware debugging is employed to figure out the probable
errors that appear as a result of flaws in the firmware.

Non-Operational Quality Attributes
(continued)

2. Evolvability
• Evolvability is referred as the non-heritable variation (in

Biology)

• For an embedded system, the quality attribute 'Evolvability’
refers to the ease with which the embedded product
(including firmware and hardware) can be modified to take
advantage of new firmware or hardware technologies.

Non-Operational Quality Attributes
(continued)

3. Portability
• Portability is a measure of 'system independence’.
• An embedded product is said to be portable if the product is

capable of functioning 'as such' in various environments, target
processors/controllers and embedded operating systems.

• A standard embedded product should always be flexible and
portable.

• In embedded products, the term 'porting' represents the
migration of the embedded firmware written for one target
processor (e.g. Intel x86) to a different target processor (say
Hitachi SH3 processor).

Non-Operational Quality Attributes
(continued)
• If the firmware is written in a high level language like ‘C’, it is very

easy to port the firmware
• It as only few target processor-specific functions which can be replaced

with the ones for the new target processor and re-compiling the program
for the new target processor-specific settings.

• The program then needs to be re-compiled to generate the new target
processor-specific machine codes.

• If the firmware is written in Assembly Language for a particular
family of processor (say x86 family), the portability is poor.
• It is very difficult to translate the assembly language instructions to the

new target processor specific language.

Non-Operational Quality Attributes
(continued)

4. Time-to-Prototype and Market
• Time-to-market is the time elapsed between the

conceptualisation of a product and the time at which the
product is ready for selling (for commercial product) or use
(for non-commercial products).

• The commercial embedded product market is highly
competitive and time-to-market the product is a critical
factor in the success of a commercial embedded product.
• Competitor might release their product before you do.

• The technology used might have superseded with a new technology.

Non-Operational Quality Attributes
(continued)
• Product prototyping helps a lot in reducing time-to-market.

• Prototyping is an informal kind of rapid product development
in which the important features of the product under
consideration are developed.

• The time-to-prototype is also another critical factor.
• If the prototype is developed faster, the actual estimated

development time can be brought down significantly.

• In order to shorten the time to prototype, make use of all possible
options like the use of off-the-shelf components, re-usable assets,
etc.

Non-Operational Quality Attributes
(continued)

5. Per Unit Cost and Revenue
• Cost is a factor which is closely monitored by both end user and

product manufacturer.
• Cost is a highly sensitive factor for commercial products.
• Any failure to position the cost of a commercial product at a

nominal rate, may lead to the failure of the product in the
market.

• Proper market study and cost benefit analysis should be carried
out before taking a decision on the per-unit cost of the
embedded product.

• The budget and total system cost should be properly balanced to
provide a marginal profit.

Non-Operational Quality Attributes
(continued)
• The product life cycle of every embedded product has different phases:
1. Design and Development Phase:
• The product idea generation, prototyping, Roadmap definition, actual product design and development are the

activities carried out during this phase.
• There is only investment and no returns.

1. Product Introduction Phase:
• Once the product is ready to sell, it is introduced to the market.
• During the initial period the sales and revenue will be low.
• There won't be much competition and the product sales and revenue increases with time.

2. Growth Phase
• The product grabs high market share.

3. Maturity Phase:
• The growth and sales will be steady and the revenue reaches at its peak.

4. Product Retirement/Decline Phase:
• Drop in sales volume, market share and revenue.

• The decline happens due to various reasons like competition from similar product with enhanced features or
technology changes, etc.

• At some point of the decline stage, the manufacturer announces discontinuing of the product.

Non-Operational Quality Attributes
(continued)
• The different stages of the embedded products life cycle—revenue, unit cost

and profit in each stage are represented in the following Product Life-cycle
graph.

Product Life Cycle (PLC) curve

Non-Operational Quality Attributes
(continued)
• From the graph, it is clear that the total revenue increases from the product

introduction stage to the product maturity stage.

• The revenue peaks at the maturity stage and starts falling in the decline/retirement
Stage.

• The unit cost is very high during the introductory stage.
• A typical example is cell phone; if you buy a new model of cell phone during its launch time,

the price will be high and you will get the same model with a very reduced price after three or
four months of its launching).

• The profit increases with increase in sales and attains a steady value and then falls
with a dip in sales.

• You can see a negative value for profit during the initial period.
• It is because during the product development phase there is only investment and

no returns.
• Profit occurs only when the total returns exceed the investment and operating cost.

Embedded Systems –
Application and Domain
Specific

Washing Machine – Application-Specific
Embedded System
• Washing machine is a typical example of an

embedded system providing extensive
support in home automation applications.

• An embedded system contains sensors,
actuators, control unit and application-
specific user interfaces like keyboards,
display units, etc.
• All these components can be seen in a

washing machine.

Washing Machine – Application-Specific
Embedded System (continued)

Washing Machine – Functional Block Diagram

Washing Machine – Application-Specific
Embedded System (continued)
• The actuator part of the washing machine consists of a motorised agitator,

tumble tub, water drawing pump and inlet valve to control the flow of water
into the unit.

• The sensor part consists of the water temperature sensor, level sensor, etc.

• The control part contains a microprocessor/controller based board with
interfaces to the sensors and actuators.

• The sensor data is fed back to the control unit and the control unit generates
the necessary actuator outputs.

• The control unit also provides connectivity to user interfaces like keypad for
setting the washing time, selecting the type of material to be washed like light,
medium, heavy duty, etc.

• User feedback is reflected through the display unit and LEDs connected to the
control board.

Washing Machine – Application-Specific
Embedded System (continued)

Top Loading
Washing Machine

Front Loading
Washing Machine

Washing Machine – Application-Specific
Embedded System (continued)
• Washing machine comes in two models, namely, top loading and

front loading machines.

• In top loading models the agitator of the machine twists back and
forth and pulls the cloth down to the bottom of the tub.
• On reaching the bottom of the tub the clothes work their way back up

to the top of the tub where the agitator grabs them again and repeats
the mechanism.

• In the front loading machines, the clothes are tumbled and plunged
into the water over and over again.

• This is the first phase of washing.

Washing Machine – Application-Specific
Embedded System (continued)
• In the second phase of washing, water is pumped out from the tub

and the inner tub uses centrifugal force to wring out more water
from the clothes by spinning at several hundred Rotations Per
Minute (RPM).

• This is called a 'Spin Phase’.

• The inner tub of the machine contains a number of holes and
during the spin cycle the inner tub spins, and forces the water out
through these holes to the stationary outer tub from which it is
drained off through the outlet pipe.

Washing Machine – Application-Specific
Embedded System (continued)
• The design of washing machines may vary from manufacturer to

manufacturer, but the general principle underlying in the working
of the washing machine remains the same.

• The basic controls consist of a timer, cycle selector mechanism,
water temperature selector, load size selector and start button.

• The mechanism includes the motor, transmission, clutch, pump,
agitator, inner tub, outer tub and water inlet valve.

• Water inlet valve connects to the water supply line using at home
and regulates the flow of water into the tub.

Washing Machine – Application-Specific
Embedded System (continued)

Integrated Control Panel of a Washing Machine

Washing Machine – Application-Specific
Embedded System (continued)
• The integrated control panel consists of a microprocessor/controller

based board with I/O interfaces and a control algorithm running in it.

• Input interface includes the keyboard which consists of wash type
selector namely Wash, Spin and Rinse, cloth type selector namely Light,
Medium, Heavy duty and washing time setting, etc.

• The output interface consists of LED/LCD displays, status indication LEDs,
etc. connected to the I/O bus of the controller.

• The other types of I/O interfaces which are invisible to the end user are
different kinds of sensor interfaces, namely, water temperature sensor,
water level sensor, etc. and actuator interface including motor control
for agitator and tub movement control, inlet water flow control, etc.

Automotive – Domain-Specific
Embedded System
• The major application domains of embedded systems are

consumer, industrial, automotive, telecom, etc.
• Telecom and automotive industry holds a big market share.

• Figure below gives an overview of the various types of electronic
control units employed automotive applications.

Automotive – Domain-Specific
Embedded System (continued)

Embedded System in the Automotive Domain

Inner Workings of Automotive
Embedded Systems
• Automotive embedded systems are the one where electronics take

control over the mechanical systems.

• The presence of automotive embedded system in a vehicle varies
from simple mirror and wiper controls to complex air bag controller
and antilock brake systems (ABS).

• Automotive embedded systems are normally built around
microcontrollers or DSPs or a hybrid of the two and are generally
known as Electronic Control Units (ECUs).

• The number of embedded controllers in an ordinary vehicle varies
from 20 to 40 whereas a luxury vehicle like Mercedes S and BMW 7
may contain 75 to 100 numbers of embedded controllers.

Inner Workings of Automotive
Embedded Systems (continued)
• Government regulations on fuel economy, environmental factors

and emission standards and increasing customer demands on
safety, comfort and infotainment forces the automotive
manufactures to opt for sophisticated embedded control units
within the vehicle.

• The first embedded system used in automotive application was the
microprocessor based fuel injection system introduced by
Volkswagen 1600 in 1968.

Inner Workings of Automotive
Embedded Systems (continued)
• The electronic control units (ECUs) used in the automotive

embedded industry can be broadly classified into two:
• High-speed Electronic Control Units (HECUs):
• These are deployed in critical control units requiring fast response.
• They include fuel injection systems, antilock brake systems, engine control,

electronic throttle, steering controls, transmission control unit and central control
unit.

• Low-speed Electronic Control Units (LECUs):
• These are deployed in applications where response time is not so critical.

• They generally are built around low cost microprocessors/microcontrollers and
digital signal processors.

• Audio controllers, passenger and driver door locks, door glass controls (power
windows), wiper control, mirror control, seat control systems, head lamp and tail
lamp controls, sun roof control unit etc. are examples of LECUs.

Automotive Communication Buses
• Automotive applications make use of serial buses for

communication, which greatly reduces the amount of wiring
required inside a vehicle.

• Different types of serial interface buses are:
• Controller Area Network (CAN) Bus

• Local Interconnect Network (LIN) Bus

• Media-Oriented System Transport (MOST) Bus

Automotive Communication Buses
(continued)
• Controller Area Network (CAN) Bus
• CAN Bus was originally proposed by Robert Bosch, pioneer in the

Automotive embedded solution providers.

• It supports medium speed (ISO11519-class B with data rates up to 125
Kbps) and high speed (IS011898 class C with data rates up to 1 Mbps)
data transfer.

• CAN is an event-driven protocol interface with support for error
handling in data transmission.

• It is generally employed in safety system like airbag control; power
train systems like engine control and Antilock Brake System (ABS); and
navigation systems like GPS.

Automotive Communication Buses
(continued)
• Local Interconnect Network (LIN) Bus
• LIN bus is a single master multiple slave (up to 16 independent slave

nodes) communication interface.
• LIN is a low speed, single wire communication interface with support

for data rates up to 20 Kbps and is used for sensor/actuator
interfacing.

• LIN bus follows the master communication triggering technique to
eliminate the possible bus arbitration problem that can occur by the
simultaneous talking of different slave nodes connected to a single
interface bus.

• LIN bus is employed in applications like mirror controls, fan controls,
seat positioning controls, window controls, and position controls
where response time is not a critical issue.

Automotive Communication Buses
(continued)
• Media-Oriented System Transport (MOST) Bus
• MOST Bus is targeted for automotive audio/video equipment

interfacing.

• It is a multimedia fibre-optic point-to-point network implemented in a
star, ring or daisy-chained topology over optical fibre cables.

• The MOST bus specifications define the physical (electrical and optical
parameters) layer as well as the application layer, network layer, and
media access control.

• MOST bus is an optical fibre cable connected between the Electrical
Optical Converter (EOC) and Optical Electrical Converter (OEC), which
would translate into the optical cable MOST bus.

Key Players of the Automotive Embedded
Market
• The key players of the automotive embedded market can be visualised in

three verticals namely, silicon providers, tools and platform providers and
solution providers.

• Silicon Providers
• They are responsible for providing the necessary chips which are used in the

control application development.
• The chip may be a standard product like microcontroller or DSP or ADC/DAC

chips.
• Some applications may require specific chips and they are manufactured as

Application Specific Integrated Chip (ASIC).
• The leading silicon providers in the automotive industry are Analog Devices,

Xilinx, Atmel, Maxim/Dallas, NXP Semiconductors, Renesas, Texas
Instruments, Fujitsu, Infineon, NEC, etc.

Key Players of the Automotive Embedded
Market (continued)
• Tools and Platform Providers
• They are manufacturers and suppliers of various kinds of development

tools and Real Time Embedded Operating Systems for developing and
debugging different control unit related applications.

• Tools fall into two categories, namely embedded software application
development tools and embedded hardware development tools.
• Sometimes the silicon suppliers provide the development suite for application

development using their chip.

• Some third party suppliers may also provide development kits and libraries.

• Some of the leading suppliers of tools and platforms in automotive
embedded applications are ENEA, The MathWorks, MATLAB, Keil
Software, Lauterbach, ARTiSAN, Microsoft, etc.

Key Players of the Automotive Embedded
Market (continued)
• Solution Providers
• They supply Original Equipment Manufacturer (OEM) and complete

solution for automotive applications making use of the chips,
platforms and different development tools.

• The major players of this domain Bosch Automotive, DENSO
Automotive, Infosys Technologies, Delphi, etc.

Hardware Software Co-
Design and Program
Modelling

Hardware Software Co-Design
• In the traditional embedded system development approach, the hardware

software partitioning is done at an early stage.
• Engineers from the software group take care of the software architecture

development and implementation, whereas engineers from the hardware group are
responsible for building the hardware required for the product.

• There is less interaction between the two teams and the development happens
either serially or in parallel.

• Once the hardware and software are ready, the integration is performed.

• The increasing competition in the commercial market and need for reduced
'time-to-market' the product calls for a novel approach for embedded system
design in which the hardware and software are co-developed instead of
independently developing both.

Hardware Software Co-Design
(continued)
• During the co-design process, the product requirements captured from the

customer are converted into system level needs or processing requirements.
• At this point of time it is not segregated as either hardware requirement or

software requirement, instead it is specified as functional requirement.

• The system level processing requirements are then transferred into functions
which can be simulated and verified against performance and functionality.

• The Architecture design follows the system design.
• The partition of system level processing requirements into hardware and software

takes place during the architecture design phase.

• Each system level processing requirement is mapped as either hardware and/or
software requirement.

• The partitioning is performed based on the hardware-software trade-offs.

Hardware Software Co-Design
(continued)
• The architectural design results in the detailed behavioural

description of the hardware requirement and the definition of the
software required for the hardware.

• The processing requirement behaviour is usually captured using
computational models.

• The models representing the software processing requirements are
translated into firmware implementation using programming
languages.

Fundamental Issues in Hardware
Software Co-Design
• The fundamental issues in hardware software co-design are:

• Selecting the Model

• Selecting the Architecture

• Selecting the Language

• Partitioning System Requirements into Hardware and Software

Fundamental Issues in Hardware
Software Co-Design (continued)
• Selecting the Model

• In hardware software co-design, models are used for capturing and describing the
system characteristics.

• A model is a formal system consisting of objects and composition rules.

• It is hard to make a decision on which model should be followed in a particular
system design.

• Most often designers switch between a variety of models from the requirements
specification to the implementation aspect of the system design.

• The reason being, the objective varies with each phase.

• For example, at the specification stage, only the functionality of the system is in focus and not the
implementation information.

• When the design moves to the implementation aspect, the information about the system components
is revealed and the designer has to switch to a model capable of capturing the system's structure.

Fundamental Issues in Hardware
Software Co-Design (continued)
• Selecting the Architecture

• A model only captures the system characteristics and does not provide information
on 'how the system can be manufactured?’.

• The architecture specifies how a system is going to implement in terms of the
number and types of different components and the interconnection among them.

• The commonly used architectures in system design are Controller Architecture,
Datapath Architecture, Complex Instruction Set Computing (CISC), Reduced
Instruction Set Computing (RISC), Very Long Instruction Word Computing (VLIW),
Single Instruction Multiple Data (SIMD), Multiple Instruction Multiple Data (MIMD),
etc.

• Some of them fall into Application Specific Architecture Class (like controller architecture),
while others fall into either general purpose architecture class (CISC, RISC, etc.) or Parallel
processing class (like VLIW, SIMD, MIMD, etc.).

Fundamental Issues in Hardware
Software Co-Design (continued)
• The controller architecture implements the finite state machine model using a state

register and two combinational circuits.

• The state register holds the present state and the combinational circuits implement the logic
for next state and output.

• The datapath architecture is best suited for implementing the data flow graph
model where the output is generated as a result of a set of predefined
computations on the input data.

• A datapath represents a channel between the input and output

• The datapath may contain registers, counters, register files, memories and ports along with
high speed arithmetic units.

• Ports connect the datapath to multiple buses.

• Most of the time the arithmetic units are connected in parallel with pipelining support for
bringing high performance.

Fundamental Issues in Hardware
Software Co-Design (continued)
• The Finite State Machine Datapath (FSMD) architecture combines the

controller architecture with datapath architecture.

• It implements a controller with datapath.

• The controller generates the control input whereas the datapath processes the data.

• The datapath contains two types of I/O ports, out of which one acts as the control port for

receiving/sending the control signals from/to the controller unit and the second I/O port

interfaces the datapath with external world for data input and data output.

• Normally the datapath is implemented in a chip and the I/O pins of the chip acts as the

data input output ports for the chip resident data path.

Fundamental Issues in Hardware
Software Co-Design (continued)
• The Complex Instruction Set Computing (CISC) architecture uses an

instruction set representing complex operations.
• It is possible for a CISC instruction set to perform a large complex operation with a

single instruction.

• e.g. Reading a register value and comparing it with a given value and then
transfer the program execution to a new address location is done using the CJNE
instruction for 8051 ISA).

• The use of a single complex instruction in place of multiple simple instructions
greatly reduces the program memory access and program memory size
requirement.

• However it requires additional silicon for implementing microcode decoder for
decoding the CISC instruction.

• The datapath for the CISC processor is complex.

Fundamental Issues in Hardware
Software Co-Design (continued)
• The Reduced Instruction Set Computing (RISC) architecture uses

instruction set representing simple operations.

• It requires the execution of multiple RISC instructions to perform a complex

operation.

• The datapath of RISC architecture contains a large register file for storing

the operands and output.

• RISC instruction set is designed to operate on registers.

• RISC architecture supports extensive pipelining.

Fundamental Issues in Hardware
Software Co-Design (continued)
• The Very Long Instruction Word (VLIW) architecture implements multiple functional units (ALUs,

multipliers, etc.) in the datapath.

• The VLIW instruction packages one standard instruction per functional unit of the datapath.

• Parallel processing architecture implements multiple concurrent Processing Elements (PEs) and

each processing element may associate a datapath containing register and local memory.

• Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) architectures are examples for

parallel processing architecture.

• In SIMD architecture, a single instruction is executed in parallel with the help of the Processing Elements.

• The scheduling of the instruction execution and controlling of each PE is performed through a single controller.

• The SIMD architecture forms the basis of re-configurable processor.

• In MIMD architecture, the Processing Elements execute different instructions at a given point of time.

• The MIMD architecture forms the basis of multiprocessor systems.

• The PEs in a multiprocessor system communicates through mechanisms like shared memory and message passing.

Fundamental Issues in Hardware
Software Co-Design (continued)
• Selecting the Language

• A programming language captures a 'Computational Model' and maps it into
architecture.

• There is no hard and fast rule to specify this language should be used for capturing
this model.

• A model can be captured using multiple programming languages like C, C++, C#,
Java, etc. for software implementations and languages like VHDL, System C, Verilog,
etc. for hardware implementations.

• On the other hand, a single language can be used for capturing a variety of models.

• Certain languages are good in capturing certain computational model.
• For example, C++ is a good candidate for capturing an object oriented model.

• The only pre-requisite in selecting a programming language for capturing a model is
that the language should capture the model easily.

Fundamental Issues in Hardware
Software Co-Design (continued)
• Partitioning System Requirements into Hardware and Software

• From an implementation perspective, it may be possible to
implement the system requirements in either hardware or
software (firmware).

• It is a tough decision making task to figure out which one to opt.

• Various hardware software trade-offs are used for making a
decision on the hardware-software partitioning.

Computational Models in Embedded
Design
• The commonly used computational models in embedded system

design are:

• Data Flow Graph Model

• Control Data Flow Graph Model

• State Machine Model

• Sequential Program Model

• Concurrent/Communicating Process Model

• Object-Oriented Model

Data Flow Graph/Diagram (DFG) Model
• The Data Flow Graph (DFG) model translates the data processing

requirements into a data flow graph.

• It is a data driven model in which the program execution is
determined by data.

• This model emphasises on the data and operations on the data
which transforms the input data to output data.

• Embedded applications which are computational intensive and data
driven are modelled using the DFG model.

• DSP applications are typical examples for it.

Data Flow Graph/Diagram (DFG) Model
(continued)
• Data Flow Graph (DFG) is a visual model in which the operation on the

data (process) is represented using a block (circle) and data flow is
represented using arrows.

• An inward arrow to the process (circle) represents input data and an
outward arrow from the process (circle) represents output data in DFG
notation.

• Suppose one of the functions in our application contains the
computational requirement 𝑥 = 𝑎 + 𝑏 and 𝑦 = 𝑥 − 𝑐.

• Figure illustrates the implementation of a DFG model for implementing
these requirements.

Data Flow Graph/Diagram (DFG) Model
(continued)

+

-

a b

c
x

y Data Flow Graph (DFG) Model

Data Flow Node

Data Flow Node

Data Flow Graph/Diagram (DFG) Model
(continued)
• In a DFG model, a data path is the data flow path from input to

output.

• A DFG model is said to be acyclic DFG (ADFG) if it doesn't contain
multiple values for the input variable and multiple output values for
a given set of input(s).

• Feedback inputs (Output is fed back to Input), events, etc. are
examples for non-acyclic inputs.

• A DFG model translates the program as a single sequential process
execution.

Control Data Flow Graph/Diagram
(CDFG) Model
• The DFG model is a data driven model in which the execution is

controlled by data and it doesn't involve any control operations
(conditionals).

• The Control DFG (CDFG) model is used for modelling applications
involving conditional program execution.

• CDFG models contains both data operations and control operations.

• The CDFG uses Data Flow Graph (DFG) as element and conditional
(constructs) as decision makers.

• CDFG contains both data flow nodes and decision nodes, whereas DFG
contains only data flow nodes.

Control Data Flow Graph/Diagram
(CDFG) Model (continued)
• Consider the implementation of the CDFG for the following requirement.

• 𝐼𝑓 𝑓𝑙𝑎𝑔 = 1, 𝑥 = 𝑎 + 𝑏; 𝑒𝑙𝑠𝑒 𝑦 = 𝑎 − 𝑏;

• This requirement contains a decision making process.

• The CDFG model for the same is given in the figure.

• The control node is represented by a 'Diamond' block which is the decision
making element in a normal flow chart based design.

• CDFG translates the requirement, which is modelled to a concurrent process
model.

• The decision on which process is to be executed is determined by the control
node.

Control Data Flow Graph/Diagram
(CDFG) Model (continued)

+

-

b a

x

Control Data Flow Graph (CDFG) Model

Data Flow Node

Data Flow Node

flag=1? Control Node

y

T

F

Control Data Flow Graph/Diagram
(CDFG) Model (continued)
• A real world example for modelling the embedded application using

CDFG is capturing and saving of the image to a format set by the user in
a digital still camera.

• Here everything is data driven.
• Analog Front End converts the CCD sensor generated analog signal to Digital Signal

• The data from ADC is stored to a frame buffer for the use of a media processor
which performs various operations like, auto correction, white balance adjusting,
etc.

• The decision on, in which format the image is stored (formats like JPEG,
TIFF, BMP, etc.) is controlled by the camera settings, configured by the
user.

State Machine Model
• The State Machine Model is used for modelling reactive or event-driven

embedded systems whose processing behaviour are dependent on state
transitions.
• Embedded systems used in the control and industrial applications are typical

examples for event driven systems.

• The State Machine model describes the system behaviour with 'States',
'Events', 'Actions' and 'Transitions’.
• State is a representation of a current situation.

• An event is an input to the state.
• The event acts as stimuli for state transition.

• Transition is the movement from one state to another.

• Action is an activity to be performed by the state machine.

Finite State Machine (FSM) Model
• A Finite State Machine (FSM) model is one in which the number of states are

finite.

• The system is described using a finite number of possible states.

• As an example, let us consider the design of an embedded system for
driver/passenger 'Seat Belt Warning' in an automotive using the FSM model.

• The system requirements are captured as.

1. When the vehicle ignition is turned on and the seat belt is not fastened within 10
seconds of ignition ON, the system generates an alarm signal for 5 seconds.

2. The Alarm is turned off when the alarm time (5 seconds) expires or if the
driver/passenger fastens the belt or if the ignition switch is turned off, whichever
happens first.

Finite State Machine (FSM) Model
(continued)
• Here the states are

• 'Alarm Off’

• 'Waiting’

• 'Alarm On’

• The events are
• 'Ignition Key ON’

• 'Ignition Key OFF’

• 'Timer Expire’

• 'Alarm Time Expire’

• 'Seat Belt ON’

• Using the FSM, the system requirements can be modeled as given in figure.

Finite State Machine (FSM) Model
(continued)

FSM Model for Automatic Seat Belt Warning System

Alarm
Off

Alarm
On

Waiting

Finite State Machine (FSM) Model
(continued)
• The 'Ignition Key ON' event triggers the 10 second timer and transitions the state to 'Waiting’.

• If a Seat Belt ON’ or 'Ignition Key OFF' event occurs during the wait state, the state transitions
into 'Alarm Off’.

• When the wait timer expires in the waiting state, the event 'Timer Expire' is generated and it
transitions the state to 'Alarm On' from the 'Waiting' state.

• The 'Alarm On' state continues until a 'Seat Belt ON' or 'Ignition Key OFF' event or 'Alarm Time
Expire' event, whichever occurs first.

• The occurrence of any of these events transitions the state to 'Alarm Off’.

• The wait state is implemented using a timer.

• The timer also has certain set of states and events for state transitions.

• Using the FSM model, the timer can be modelled as shown in the figure.

Finite State Machine (FSM) Model
(continued)

FSM Model for Timer

IDLE

RUNNING

READY

Finite State Machine (FSM) Model
(continued)
• As seen from the FSM, the timer state can be either 'IDLE' or 'READY' or 'RUNNING’.

• During the normal condition when the timer is not running, it is said to be in the 'IDLE'
state.

• The timer is said to be in the 'READY’ state when the timer is loaded with the count
corresponding to the required time delay.

• The timer remains in the 'READY' state until a 'Start Timer' event occurs.

• The timer changes its state to 'RUNNING' from the 'READY' state on receiving a 'Start
Timer' event and remains in the 'RUNNING' state until the timer count expires or a
'Stop Timer' even occurs.

• The timer state changes to 'IDLE' from 'RUNNING' on receiving a 'Stop Timer' or 'Timer
Expire' event.

FSM Model - Example 1
Design an automatic tea/coffee vending machine based on FSM model for the following
requirement.

• The tea/coffee vending is initiated by user inserting a 5 rupee coin.

• After inserting the coin, the user can either select 'Coffee' or 'Tea' or press 'Cancel' to cancel
the order and take back the coin.

Solution

• The FSM Model contains four states namely,

• 'Wait for coin’

• 'Wait for User Input’

• 'Dispense Tea'

• 'Dispense Coffee'

FSM Model - Example 1 (continued)

FSM Model for Automatic Tea/Coffee Vending Machine

STATE A

STATE D

STATE C

STATE B

FSM Model - Example 1 (continued)
• The event 'Insert Coin' (5 rupee coin insertion), transitions the state to 'Wait

for User Input’.

• The system stays in this state until a user input is received from the buttons
'Cancel', 'Tea' or 'Coffee' (Tea and Coffee are the drink select button).

• If the event triggered in 'Wait State' is 'Cancel' button press, the coin is pushed
out and the state transitions to 'Wait for Coin’.

• If the event received in the 'Wait State' is either 'Tea' button press, or 'Coffee'
button press, the state changes to 'Dispense Tea' and 'Dispense Coffee'
respectively.

• Once the coffee/tea vending is over, the respective states transition back to the
'Wait for Coin' state.

FSM Model - Example 2
Design a coin operated public telephone unit based on FSM model for the following
requirements.

1. The calling process is initiated by lifting the receiver (off-hook) of the telephone unit.

2. After lifting the phone the user needs to insert a 1 rupee coin to make the call.

3. If the line is busy, the coin is returned on placing the receiver back on the hook (on-hook).

4. If the line is through, the user is allowed to talk till 60 seconds and at the end of 45th
second, prompt for inserting another 1 rupee coin for continuing the call is initiated.

5. If the user doesn't insert another 1 rupee coin, the call is terminated on completing the 60
seconds time slot.

6. The system is ready to accept new call request when the receiver is placed back on the
hook (on-hook).

7. The system goes to the 'Out of Order' state when there is a line fault.

FSM Model for
Coin Operated Telephone
System

STATE A

STATE F

STATE G

STATE H

STATE B

STATE I

STATE C

STATE D

STATE E

Sequential Program Model
• In the Sequential Program Model, the functions or processing

requirements are executed in sequence.
• It is same as the conventional procedural programming.

• Here the program instructions are iterated and executed
conditionally and the data gets transformed through a series of
operations.

• Finite State Machines (FSMs) and Flow Charts are used for
modelling sequential program.
• The FSM approach represents the states, events, transitions and actions,

whereas the Flow Chart models the execution flow.

#define ON 1

#define OFF 0

#define YES 1

#define NO 0

void seat_belt_warn()

{

wait_10sec();

if (check_ignition_key()==ON)

{

if (check_seat_belt()==OFF)

{

set_timer(5);

start_alarm();

while ((check_seat_belt()==OFF)&&(check_ignition_key()==ON)&&(timer_expire()==NO));

stop_alarm();

}

}

}

}

Sequential Program Model (continued)
• The execution of functions in a sequential program model for the 'Seat Belt Warning'

system is illustrated below:

Sequential Program Model for
Seat Belt Warning System

Figure illustrates the flow chart
approach for modelling the 'Seat Belt
Warning' system explained in the FSM
modelling section.

Concurrent/Communicating Process
Model
• The concurrent or communicating process model models concurrently

executing tasks/processes.
• It is easier to implement certain requirements in concurrent processing model

than the conventional sequential execution.
• Sequential execution leads to a single sequential execution of task and thereby

leads to poor processor utilisation, when the task involves I/O waiting, sleeping for
specified duration etc.

• If the task is split into multiple subtasks, it is possible to tackle the CPU usage
effectively by switching the task execution, when the subtask under execution goes
to a wait or sleep mode.

• However, concurrent processing model requires additional overheads in task
scheduling, task synchronisation and communication.

Concurrent/Communicating Process
Model (continued)
• As an example, consider the implementation of the 'Seat Belt

Warning' system using concurrent processing model.

• We can split the tasks into:

1. Timer task for waiting 10 seconds (wait timer task)

2. Task for checking the ignition key status (ignition key status monitoring task)

3. Task for checking the seat belt status (seat belt status monitoring task)

4. Task for starting and stopping the alarm (alarm control task)

5. Alarm timer task for waiting 5 seconds (alarm timer task)

Concurrent/Communicating Process
Model (continued)
• The tasks cannot be executed them randomly or sequentially.
• We need to synchronise their execution through some mechanism.

• For example, the alarm control task is executed only when the wait timer is
expired and if the ignition key is in the ON state and seat belt is in the OFF
state.

• We will use events to indicate these scenarios.
• The wait_timer_expire event is associated with the timer task event and

it will be in the reset state initially and it is set when the timer expires.
• Similarly, events ignition_on and ignition_off are associated with the task

ignition key status monitoring and the events seat_belt_on and
seat_belt_off are associated with the task seat belt status monitoring.

Concurrent/Communicating Process
Model (continued)

Create and initialize events

wait_timer_expire, ignition_on, ignition_off,

seat_belt_on, seat_belt_off,

alarm_timer_start, alarm_timer_expire

Create task Wait Timer

Create task Ignition Key Status Monitor

Create task Seat Belt Status Monitor

Create task Alarm Control

Create task Alarm Timer

Tasks for Seat Belt Warning System

Wait Timer Task

Sleep(10s);

//Signal wait_timer_expire

Set Event wait_time_expire;

Concurrent Processing Program
Model for Seat Belt Warning
System

Ignition Key Status Monitor

Task

while(1) {

if (Ignition key ON) {

Set Event ignition_on;

Reset Event ignition_off;

}

else {

Set Event ignition_off;

Reset Event ignition_on;

}

}

Alarm Control Task

Wait for the signalling of

wait_timer_expire

if (ignition_on && seat_belt_off) {

Start Alarm();

Set Event alarm_start;

Wait for the signalling of

alarm_timer_expire or

ignition_off or seat_belt_on;

Stop Alarm();

}

Alarm Timer Task

Wait for the Event alarm_start;

Sleep(5s);

//Signal alarm_timer_expire

Set Event alarm_time_expire;

Seat Belt Status Monitor Task

while(1) {

if (Seat Belt ON) {

Set Event seat_belt_on;

Reset Event seat_belt_off;

}

else {

Set Event seat_belt_off;

Reset Event seat_belt_on;

}

}

Object-Oriented Model
• The object-oriented model is an object based model for modelling

system requirements.

• It disseminates a complex software requirement into simple well
defined pieces called objects.

• Object-oriented model brings re-usability, maintainability and
productivity in system design.

• In the object-oriented modelling, object is an entity used for
representing or modelling a particular piece of the system.
• Each object is characterised by a set of unique behaviour and state.

Object-Oriented Model (continued)
• A class is an abstract description of a set of objects and it can be considered as

a 'blueprint' of an object.
• A class represents the state of an object through member variables and object

behaviour through member functions.
• The member variables and member functions of a class can be private, public

or protected.
• Private member variables and functions are accessible only within the class,

whereas public variables and functions are accessible within the class as well as
outside the class.

• The protected variables and functions are protected from external access.
• However classes derived from a parent class can also access the protected member

functions and variables.

• The concept of object and class brings abstraction, hiding and protection.

Embedded Firmware
Design and
Development

Introduction to Embedded Firmware
Design
• The embedded firmware is responsible for controlling the various

peripherals of the embedded hardware and generating response in
accordance with the functional requirements.

• Firmware is considered as the master brain of the embedded system.
• Imparting intelligence to an Embedded system is a one time process and

it can happen at any stage.
• It can be immediately after the fabrication of the embedded hardware or at a later

stage.

• For most of the embedded products, the embedded firmware is stored
at a permanent memory (ROM) and they are non-alterable by end users.
• Some of the embedded products used in the Control and Instrumentation domain

are adaptive.

Introduction to Embedded Firmware
Design (continued)
• Designing embedded firmware requires understanding of the particular

embedded product hardware, like various component interfacing,
memory map details, I/O port details, configuration and register details
of various hardware chips used and some programming language.

• Embedded firmware development process starts with the conversion of
the firmware requirements into a program model using modelling tools.

• Once the program model is created, the next step is the implementation
of the tasks and actions by capturing the model using a language which
is understandable by the target processor/controller.

Embedded Firmware Design Approaches
• The firmware design approaches for embedded product is purely

dependent on the complexity of the functions to be performed, the
speed of operation required, etc.

• Two basic approaches are used for embedded firmware design:

• Super Loop Based Approach (Conventional Procedural Based Design)

• Embedded Operating System (OS) Based Approach

Super Loop Based Approach
• The Super Loop based firmware development approach is adopted for

applications that are not time critical and where the response time is not

so important.

• It is very similar to a conventional procedural programming where the

code is executed task by task.

• The task listed at the top of the program code is executed first and the

tasks just below the top are executed after completing the first task.

• In a multiple task based system, each task is executed in serial in this

approach.

Super Loop Based Approach (continued)
• The firmware execution flow for this will be

1. Configure the common parameters and perform initialisation for various
hardware components memory, registers, etc.

2. Start the first task and execute it

3. Execute the second task

4. Execute the next task

5. :

6. :

7. Execute the last defined task

8. Jump back to the first task and follow the same flow

Super Loop Based Approach (continued)
• The order in which the tasks to be executed are fixed and they are hard coded in the code

itself.
• Also the operation is an infinite loop based approach.

• We can visualise the operational sequence listed above in terms of a 'C' program code as

void main()

{

Configurations();

Initializations();

while(1)

{

Task 1();

Task 2();

:

:

Task n();

}

}

Super Loop Based Approach (continued)
• Almost all tasks in embedded applications are non-ending and are

repeated infinitely throughout the operation.
• This repetition is achieved by using an infinite loop.
• Hence the name 'Super loop based approach’.

• The only way to come out of the loop is either a hardware reset or
an interrupt assertion.
• A hardware reset brings the program execution back to the main loop.
• An interrupt request suspends the task execution temporarily and performs

the corresponding interrupt routine and on completion of the interrupt
routine it restarts the task execution from the point where it got interrupted.

Super Loop Based Approach (continued)
• Advantage of Super Loop Based Approach:

• It doesn't require an operating system

• There is no need for scheduling which task is to be executed and assigning priority
to each task.

• The priorities are fixed and the order in which the tasks to be executed are also
fixed.

• Hence the code for performing these tasks will be residing in the code memory
without an operating system image.

Super Loop Based Approach (continued)
• Applications of Super Loop Based Approach:

• This type of design is deployed in low-cost embedded products and
products where response time is not time critical.

• Some embedded products demands this type of approach if some
tasks itself are sequential.

• For example, reading/writing data to and from a card using a card
reader requires a sequence of operations like checking the presence of
card, authenticating the operation, reading/writing, etc.

• It should strictly follow a specified sequence and the combination of these series
of tasks constitutes a single task-namely data read/write.

Super Loop Based Approach (continued)
• A typical example of a 'Super loop based’ product is an electronic

video game toy containing keypad and display unit.

• The program running inside the product may be designed in such a
way that it reads the keys to detect whether the user has given any
input and if any key press is detected the graphic display is updated.

• The keyboard scanning and display updating happens at a reasonably
high rate.

• Even if the application misses a key press, it won't create any critical
issues; rather it will be treated as a bug in the firmware.

• It is not economical to embed an OS into low cost products and it is an
utter waste to do so if the response requirements are not crucial.

Super Loop Based Approach (continued)
• Drawbacks of Super Loop Based Approach:

• Any failure in any part of a single task will affect the total system.
• If the program hangs up at some point while executing a task, it will remain there forever

and ultimately the product stops functioning.

• Watch Dog Timers (WDTs) can be used to overcome this, but this, in turn, may cause
additional hardware cost and firmware overheads.

• Lack of real timeliness.
• If the number of tasks to be executed within an application increases, the time at which

each task is repeated also increases.

• This brings the probability of missing out some events.

• For example, in a system with keypads, in order to identify the key press, you may have to
press the keys for a sufficiently long time till the keypad status monitoring task is executed
internally by the firmware.
• Interrupts can be used for external events requiring real time attention.

Embedded Operating System (OS) Based
Approach
• The Embedded Operating System (OS) based approach contains

operating systems, which can be either a General Purpose
Operating System (GPOS) or a Real Time Operating System (RTOS)
to host the user written application firmware.

Embedded Operating System (OS) Based
Approach (continued)
• The General Purpose OS (GPOS) based design is very similar to a conventional PC

based application development where the device contains an operating system
(Windows/Unix/Linux, etc. for Desktop PCs) and you will be creating and running user
applications on top of it.

• Example of a GPOS used in embedded product development is Microsoft Windows XP
Embedded.

• Examples of Embedded products using Microsoft Windows XP OS are Personal Digital Assistants
(PDAs), Hand held devices/Portable devices and Point of Sale (POS) terminals.

• Use of GPOS in embedded products merges the demarcation of Embedded Systems
and general computing systems in terms of OS.

• For developing applications on top of the OS, the OS supported APIs are used.

• Similar to the different hardware specific drivers, OS based applications also require
'Driver software' for different hardware present on the board to communicate with
them.

Embedded Operating System (OS) Based
Approach (continued)
• Real Time Operating System (RTOS) based design approach is employed in embedded

products demanding Real-time response.

• RTOS responds in a timely and predictable manner to events.

• Real Time operating system contains a Real Time kernel responsible for performing
pre-emptive multitasking, scheduler for scheduling tasks, multiple threads, etc.

• A Real Time Operating System (RTOS) allows flexible scheduling of system resources like the
CPU and memory and offers some way to communicate between tasks.

• 'Windows CE', 'pSOS', 'VxWorks', 'ThreadX', 'MicroC/OS-II’, 'Embedded Linux',
'Symbian’, etc. are examples of RTOS employed in embedded product development.

• Mobile phones, PDAs (Based on Windows CE/Windows Mobile Platforms), handheld
devices, etc. are examples of 'Embedded Products' based on RTOS.

• Most of the mobile phones are built around the popular RTOS 'Symbian’. (sic)

Embedded Firmware Development
Languages
• For embedded firmware development, we can use either

• a target processor/controller specific language (Generally known as
Assembly language or low level language) or

• a target processor/controller independent language (Like C, C++, JAVA, etc.
commonly known as High Level Language) or

• a combination of Assembly and High level Language.

Assembly Language Based Development
• 'Assembly language' is the human readable notation of 'machine language’

• ‘Machine Ianguage' is a processor understandable language.

• Machine language is a binary representation and it consists of 1s and 0s.

• Machine language is made readable by using specific symbols called 'mnemonics’.

• Hence machine language can be considered as an interface between processor and
programmer.

• Assembly language and machine languages are processor/controller dependent and
an assembly program written for one processor/controller family will not work with
others.

• Assembly language programming is the task of writing processor specific machine
code in mnemonic form, converting the mnemonics into actual processor
instructions (machine language) and associated data using an assembler.

Assembly Language Based Development
• 'Assembly language' is the human readable notation of 'machine language’

• ‘Machine Ianguage' is a processor understandable language.

• Machine language is a binary representation and it consists of 1s and 0s.

• Machine language is made readable by using specific symbols called 'mnemonics’.

• Hence machine language can be considered as an interface between processor and
programmer.

• Assembly language and machine languages are processor/controller dependent and
an assembly program written for one processor/controller family will not work with
others.

• Assembly language programming is the task of writing processor specific machine
code in mnemonic form, converting the mnemonics into actual processor
instructions (machine language) and associated data using an assembler.

Assembly Language Based Development
(continued)
• Assembly Language program was the most common type of

programming adopted in the beginning of software revolution.

• Even today also almost all low level, system related, programming is
carried out using assembly language.

• In particular, assembly language is often used in writing the low
level interaction between the operating system and the hardware,
for instance in device drivers.

Assembly Language Based Development
(continued)
• The general format of an assembly language instruction is an Opcode

followed by Operands.

• The Opcode tells the processor/controller what to do and the Operands
provide the data and information required to perform the action
specified by the opcode.

• For example
MOV A, #30

Here MOV A is the Opcode and #30 is the operand

• The same instruction when written in machine language will look like
01110100 00011110

where the first 8-bit binary value 01110100 represents the opcode MOV A and the
second 8-bit binary value 00011110 represents the operand 30.

Assembly Language Based Development
(continued)
• Each line of an assembly language program is split into four fields as

given below

LABEL OPCODE OPERAND COMMENTS

• A 'LABEL' is an optional identifier used extensively in programs to
reduce the reliance on programmers for remembering where data
or code is located.

• For example

DELAY: MOV R0,#255 ;Load Register R0 with 255

LABEL OPCODE OPERAND COMMENT

Assembly Language Based Development
(continued)
• The Assembly language program written in assembly code is saved as .asm (Assembly

file) file or an .src (source) file (also .s file).

• Any text editor like ‘Notepad' or 'WordPad' from Microsoft or the text editor provided
by an Integrated Development (IDE) tool can be used for writing the assembly
instructions.

• Similar to 'C' and other high level language programming, we can have multiple source
files called modules in assembly language programming.
• Each module is represented by an '.asm' or '.src' file.

• This approach is known as 'Modular Programming’.

• Modular programming is employed when the program is too complex or too big.
• In 'Modular Programming', the entire code is divided into submodules and each module is made

re-usable.

• Modular Programs are usually easy to code, debug and alter.

Assembly Language Based Development
(continued)

Assembly language to machine
language conversion process

Source File 1
(.asm or .src file)

(Module-1)

Source File 2
(.asm or .src file)

(Module-2)

Object to Hex
File Converter

Module
Assembler

Module
Assembler

Absolute
Object File

Object File 1

Object File 2

Linker/
Locator

Library Files

Machine Code
(Hex File)

Assembly Language Based Development
(continued)
• Source File to Object File Translation
• Translation of assembly code to machine code is performed by

assembler.
• The assemblers for different target machines are different.
• A51 Macro Assembler from Keil software is a popular assembler for the 8051 family

microcontroller.

• The various steps involved in the conversion of a program written in
assembly language to corresponding binary file/machine language are
illustrated in the figure.

Assembly Language Based Development
(continued)
• Each source module is written in Assembly and is stored as .src file or .asm

file.
• Each file can be assembled separately to examine the syntax errors and

incorrect assembly instructions.
• On successful assembling of each .src/.asm file a corresponding object file is

created with extension '.obj’.
• The object file does not contain the absolute address of where the generated code needs

to be placed on the program memory and hence it is called a re-locatable segment.
• It can be placed at any code memory location and it is the responsibility. of the

linker/locater to assign absolute address for this module.

• Each module can share variables and subroutines (functions) among them.
• Keyword ‘PUBLIC’ and ‘EXTRN’ are used while accessing shared variables and subroutines.

Assembly Language Based Development
(continued)
• Library File Creation and Usage

• Libraries are specially formatted, ordered program collections of object

modules that may be used by the linker at a later time.

• Library files are generated with extension '. lib’.

• When the linker processes a library, only those object modules in the library

that are necessary to create the program are used.

• Library file is some kind of source code hiding technique.

• For example, 'LIB51' from Keil Software is an example for a library creator

and it is used for creating library files for A51 Assembler/C51 Compiler for

8051 specific controller.

Assembly Language Based Development
(continued)
• Linker and Locator

• Linker and Locater is another software utility responsible for "linking the various object
modules in a multi-module project and assigning absolute address to each module".

• Linker generates an absolute object module by extracting the object modules from the
library, if any, and those obj files created by the assembler, which is generated by
assembling the individual modules of a project.

• It is the responsibility of the linker to link any external dependent variables or functions
declared on various modules and resolve the external dependencies among the modules.

• An absolute object file or module does not contain any re-locatable code or data.
• All code and data reside at fixed memory locations.

• The absolute object file is used for creating hex files for dumping into the code memory of
the processor/controller.

• 'BL51' from Keil Software is an example for a Linker & Locater for A51 Assembler/C51
Compiler for 8051 specific controller.

Assembly Language Based Development
(continued)
• Object to Hex File Converter

• This is the final stage in the conversion of Assembly language (mnemonics) to machine

understandable language (machine code).

• Hex File is the representation of the machine code and the hex file is dumped into the code

memory of the processor/controller.

• The hex file representation varies depending on the target processor/controller make.

• HEX files are ASCII files that contain a hexadecimal representation of target application.

• Hex file is created from the final 'Absolute Object File' using the Object to Hex File

Converter utility.

• 'OH51' from Keil software is an example for Object to Hex File Converter utility for A51

Assembler/C51 Compiler for 8051 specific controller.

Advantages of Assembly Language Based
Development
• Efficient Code Memory and Data Memory Usage (Memory Optimisation)

• Since the developer is well versed with the target processor architecture and
memory organisation, optimised code can be written for performing
operations.

• This leads to less utilisation of code memory and efficient utilisation of data
memory.

• High Performance
• Optimised code not only improves the code memory usage but also

improves the total system performance.
• Through effective assembly coding, optimum performance can be achieved

for a target application.

Advantages of Assembly Language Based
Development (continued)
• Low Level Hardware Access

• Most of the code for low level programming like accessing external device specific registers
from the operating system kernel, device drivers, and low level interrupt routines, etc. are
making use of direct assembly coding since low level device specific operation support is
not commonly available with most of the high-level language cross compilers.

• Code Reverse Engineering
• Reverse engineering is the process of understanding the technology behind a product by

extracting the information from a finished product.
• Reverse engineering is performed by 'hawkers' to reveal the technology behind 'Proprietary

Products’.

• Though most of the products employ code memory protection, if it may be possible to
break the memory protection and read the code memory, it can easily be converted into
assembly code using a dis-assembler program for the target machine.

Drawbacks of Assembly Language Based
Development
• High Development Time
• Assembly language is much harder to program than high level

languages.
• The developer must pay attention to more details and must have

thorough knowledge of the architecture, memory organisation and
register details of the target processor in use.

• Learning the inner details of the processor and its assembly
instructions is highly time consuming and it creates a delay impact in
product development.

• Also more lines of assembly code are required for performing an
action which can be done with a single instruction in a high-level
language like 'C'.

Drawbacks of Assembly Language Based
Development (continued)
• Developer Dependency

• Unlike high level languages, there is no common written rule for developing assembly
language based applications.

• In assembly language programming, the developers will have the freedom to choose the
different memory location and registers.

• Also the programming approach varies from developer to developer depending on his/her
taste.
• For example moving data from a memory location to accumulator can be achieved

through different approaches.
• If the approach done by a developer is not documented properly at the development stage,

he/she may not be able to recollect why this approach is followed at a later stage or when a
new developer is instructed to analyse this code, he/she also may not be able to understand
what is done and why it is done.
• Hence upgrading an assembly program or modifying it on a later stage is very difficult.

Drawbacks of Assembly Language Based
Development (continued)
• Non-Portable

• Target applications written in assembly instructions are valid only for that
particular family of processors (e.g. Application written for Intel x86 family of
processors) and cannot be re-used for another target processors/controllers
(Say ARM11 family of processors).

• If the target processor/controller changes, a complete re-writing of the
application using the assembly instructions for the new target
processor/controller is required.

High Level Language Based Development
• Any high level language (like C, C++ or Java) with a supported cross-

compiler for the target processor can be used for embedded
firmware development.

• The most commonly used high level language for embedded
firmware application development is 'C’.
• ‘C’ is well defined, easy to use high level language with extensive cross

platform development tool support.

• Nowadays cross-compilers for C++ is also emerging out and
embedded developers are making use of C++ for embedded
application development.

High Level Language Based Development
(continued)
• The various steps involved in high level language based embedded

firmware development is same as that of assembly language based

development except that the conversion of source file written in

high level language to object file is done by a cross-compiler.
• In Assembly language based development it is carried out by an

assembler.

• The various steps involved in the conversion of a program written in

high level language to corresponding binary file/machine language

is illustrated in the figure.

High Level Language Based Development
(continued)

High level language to machine
language conversion process

Source File 1
(.c or .c++ file)

(Module-1)

Source File 2
(.c or .c++ file)

(Module-2)

Object to Hex
File Converter

Module
Cross-Compiler

Module
Cross-Compiler

Absolute
Object File

Object File 1

Object File 2

Linker/
Locator

Library Files

Machine Code
(Hex File)

High Level Language Based Development
(continued)
• The program written in any of the high level languages is saved with the

corresponding language extension (.c for C, .cpp for C++ etc).

• Any text editor like ‘Notepad' or 'WordPad' from Microsoft or the text editor

provided by an Integrated Development (IDE) tool can be used for writing the

program.

• Most of the high level languages support modular programming approach and

hence we can have multiple source files called modules written in

corresponding high level language.

• The source files corresponding to each module is represented by a file with

corresponding language extension.

High Level Language Based Development
(continued)
• Translation of high level source code to executable object code is done by a

cross-compiler.

• Each high level language should have a cross-compiler for converting the high

level source code into the target processor machine code.
• C51 Cross-compiler from Keil software is an example for Cross-compiler used for 'C'

language for the 8051 family of microcontroller.

• Conversion of each module's source code to corresponding object file is

performed by the cross-compiler.

• Rest of the steps involved in the conversion of high level language to target

processor's machine code are same as that of the steps involved in assembly

language based development.

Advantages of High Level Language
Based Development
• Reduced Development Time

• Developer requires less or little knowledge on the internal hardware details

and architecture of the target processor/controller.

• Bare minimal knowledge of the memory organisation and register details of

the target processor in use and syntax of the high level language are the only

pre-requisites for high level language based firmware development.

• With high level language, each task can be accomplished by lesser number

of lines of code compared to the target processor/controller specific

assembly language based development.

Advantages of High Level Language
Based Development (continued)
• Developer Independency

• The syntax used by most of the high level languages are universal and a

program written in the high level language can easily be understood by a

second person knowing the syntax of the language.

• High level languages always instruct certain set of rules for writing the code

and commenting the piece of code.

• If the developer strictly adheres to the rules, the firmware will be 100%

developer independent.

Advantages of High Level Language
Based Development (continued)
• Portability

• Target applications written in high level languages are converted to target

processor/controller understandable format (machine codes) by a cross-compiler.

• An application written in high level language for a particular target processor can

easily be converted to another target processor/controller specific application, with

little or less effort by simply re-compiling/little code modification followed by re-

compiling the application for the required target processor/controller, provided, the

cross-compiler has support for the processor/controller selected.

• This makes applications written in high level language highly portable.

• Little effort may be required in the existing code to replace the target processor

specific files with new header files, register definitions with new ones, etc.
• This is the major flexibility offered by high level language based design.

Limitations of High Level Language Based
Development
• Poor Optimization by Cross-Compilers

• Some cross-compilers available for high level languages may not be so
efficient in generating optimised target processor specific instructions.

• Target images created by such compilers may be messy and non-optimised
in terms of performance as well as code size.
• For example, the task achieved by cross-compiler generated machine instructions from a

high level language may be achieved through a lesser number of instructions if the same
task is hand coded using target processor specific machine codes.

• The time required to execute a task also increases with the number of
instructions.

• However modern cross-compilers are tending to adopt designs incorporating
optimisation techniques for both code size and performance.

Limitations of High Level Language Based
Development (continued)
• Not Suitable for Low Level Hardware

• High level language based code snippets may not be efficient in accessing

low level hardware where hardware access timing is critical (of the order of

nano or micro seconds).

• High Investment Cost
• The investment required for high level language based development tools

(Integrated Development Environment incorporating cross-compiler) is high

compared to Assembly Language based firmware development tools.

Mixing Assembly and High Level
Language
• Certain embedded firmware development situations may demand

the mixing of high level language with Assembly and vice versa.

• High level language and assembly languages are usually mixed in
three ways:

• Mixing Assembly Language with High Level Language

• Mixing High Level Language with Assembly Language

• Inline Assembly programming

Mixing Assembly Language with High
Level Language
• Assembly routines are mixed with 'C' in situations where

• the entire program is written in 'C' and the cross compiler in use do not have a built
in support for implementing certain features like Interrupt Service Routine
functions (ISR) or

• if the programmer wants to take advantage of the speed and optimised code
offered by machine code generated by hand written assembly rather than cross
compiler generated machine code.

• When accessing certain low level hardware, the timing specifications may be very
critical and a cross compiler generated binary may not be able to offer the required
time specifications accurately.
• Writing the hardware/peripheral access routine in processor/controller specific

Assembly language and invoking it from 'C' is the most advised method to handle
such situations.

Mixing Assembly Language with High
Level Language (continued)
• Mixing 'C' and Assembly is little complicated.

• The programmer must be aware of how parameters are passed from
the 'C' routine to Assembly and values are returned from assembly
routine to 'C' and how 'Assembly routine' is invoked from the 'C' code.

• Passing parameter to the assembly routine and returning values
from the assembly routine to the caller 'C' function and the method
of invoking the assembly routine from 'C' code is cross-compiler
dependent.

Mixing Assembly Language with High
Level Language (continued)
• Consider an example Keil C51 cross compiler for 8051 controller.

• The steps for mixing assembly code with ‘C’ are:

• Write a simple function in C that passes parameters and returns values the way you

want your assembly routine to.

• Use the SRC directive (#PRAGMA SRC at the top of the file) so that the C compiler

generates an .SRC file instead of an .OBJ file.

• Compile the C file. Since the SRC directive is specified, the .SRC file is generated.

The .SRC file contains the assembly code generated for the C code you wrote.

• Rename the .SRC file to .A51 file.

• Edit the .A51 file and insert the assembly code you want to execute in the body of

the assembly function shell included in the . A51 file.

Mixing Assembly Language with High
Level Language (continued)
• As an example consider the following sample code:

• This C function on cross compilation generates the following assembly SRC file.

• The special compiler directive SRC generates the Assembly code corresponding

to the 'C' function and each lines of the source code is converted to the

corresponding Assembly instruction.

#pragma SRC

unsigned char my_assembly_func (unsigned int argument)

{

return (argument + 1); // Insert dummy lines to access all args and

// retvals

}

Mixing High Level Language with
Assembly Language
• Mixing the code written in a high level language like 'C' and Assembly language

is useful in the following scenarios:

1. The source code is already available in Assembly language and a routine written in

a high level language like 'C' needs to be included to the existing code.
2. The entire source code is planned in Assembly code for various reasons like

optimised code, optimal performance, efficient code memory utilisation and

proven expertise in handling the Assembly, etc. But some portions of the code

may be very difficult and tedious to code in Assembly.

• For example, 16-bit multiplication and division in 8051 Assembly Language.

3. To include built in library functions written in 'C' language provided by the cross

compiler.
• For example, Built in Graphics library functions and String operations supported by 'C’.

Mixing High Level Language with
Assembly Language (continued)
• Most often the functions written in 'C' use parameter passing to the

function and returns value/s to the calling functions.

• Parameters are passed to the function and values are returned
from the function using CPU registers, stack memory and fixed
memory.

• Its implementation is cross compiler dependent and it varies across
cross compilers.

Mixing High Level Language with
Assembly Language (continued)
• Consider an example for the Keil C51 cross compiler.

• C51 allows passing of a maximum of three arguments through general

purpose registers R2 to R7.

• If the three arguments are char variables, they are passed to the function

using registers R7, R6 and R5, respectively.

• If the parameters are int values, they are passed using register pairs

(R7, R6), (R5, R4) and (R3, R2).

• If the number of arguments is greater than three, the first three

arguments are passed through registers and rest is passed through fixed

memory locations.

Mixing High Level Language with
Assembly Language (continued)
• Return values are usually passed through general purpose registers.
• R7 is used for returning char value and register pair (R7, R6) is used for

returning int value.
• The 'C' subroutine can be invoked from the assembly program using the

subroutine call Assembly instruction.
• For example

where Cfunction is a function written in 'C’
• The prefix _ informs the cross compiler that the parameters to the function are

passed through registers.
• If the function is invoked without the _ prefix, it is understood that the

parameters are passed through fixed memory locations.

LCALL _Cfunction

Inline Assembly Programming
• Inline assembly is a technique for inserting target processor/controller specific

Assembly instructions at any location of a source code written in high level
language 'C’.
• This avoids the delay in calling an assembly routine from a 'C' code.

• Special keywords are used to indicate that the start and end of Assembly
instructions.
• The keywords are cross-compiler specific.
• C51 uses the keywords #pragma asm and #pragma endasm to indicate a block of code

written in assembly.
• For example:

#pragma asm

MOV A, #13H

#pragma endasm

Programming in Embedded C
• Whenever the conventional 'C' Language and its extensions are used for programming

embedded systems, it is referred as 'Embedded C' programming.
• Programming in 'Embedded C' is quite different from conventional Desktop application

development using 'C' language for a particular OS platform.
• Desktop computers contain working memory in the range of Megabytes (Nowadays Giga

bytes) and storage memory in the range of Giga bytes.
• For a desktop application developer, the resources available are surplus in quantity and s/he can

be very lavish in the usage of RAM and ROM and no restrictions are imposed at all.
• This is not the case for embedded application developers.

• Almost all embedded systems are limited in both storage and working memory resources.
• Embedded application developers should be aware of this fact and should develop applications

in the best possible way which optimises the code memory and working memory usage as well
as performance.

• In other words, the hands of an embedded application developer are always tied up in the
memory usage context.

‘C’ vs. ‘Embedded C’
• 'C' is a well structured, well defined and standardised

general purpose programming language with extensive
bit manipulation support.

• 'C' offers a combination of the features of high level
language and assembly and helps in hardware access
programming (system level programming) as well as
business package developments (Application
developments like pay roll systems, banking
applications, etc).

• The conventional 'C' language follows ANSI standard and
it incorporates various library files for different
operating systems.

• A platform (operating system) specific application,
known as, compiler is used for the conversion of
programs written in 'C' to the target processor (on which
the OS is running) specific binary files.
• Hence it is a platform specific development.

• Embedded 'C' can be considered as a subset of
conventional 'C' language.

• Embedded 'C' supports all 'C' instructions and
incorporates a few target processor specific
functions/instructions.

• The standard ANSI 'C' library implementation is always
tailored to the target processor/controller library files in
Embedded 'C’.

• The implementation of target processor/controller
specific functions/instructions depends upon the
processor/controller as well as the supported cross-
compiler for the particular Embedded 'C' language.

• A software program called 'Cross-compiler' is used for
the conversion of programs written in Embedded 'C' to
target processor/controller specific instructions
(machine language).

Compiler vs. Cross-Compiler
• Compiler is a software tool that converts a source

code written in a high level language on top of a
particular operating system running on a specific
target processor architecture (e.g. Intel
x86/Pentium).

• Here the operating system, the compiler program
and the application making use of the source
code run on the same target processor.

• The source code is converted to the target
processor specific machine instructions.

• The development is platform specific (OS as well
as target processor on which the OS is running).

• Compilers are generally termed as 'Native
Compilers’.
• A native compiler generates machine code for the

same machine (processor) on which it is running.

• Cross-compilers are the software tools used in cross-
platform development applications.
• In cross-platform development, the compiler running on

a particular target processor/OS converts the source
code to machine code for a target processor whose
architecture and instruction set is different from the
processor on which the compiler is running or for an
operating system which is different from the current
development environment OS.

• Embedded system development is a typical example
for cross-platform development.
• Embedded firmware is developed on a machine with

Intel/AMD or any other target processors and the same
is converted into machine code for any other target
processor architecture (e.g. 8051, PIC, ARM etc).

• Keil C51 is an example for cross-compiler.
• In embedded firmware application, whenever we use

the term 'Compiler’ it normally refers to the cross-
compiler.

References
1. Shibu K V, “Introduction to Embedded Systems”, Tata McGraw Hill, 2009.

2. Raj Kamal, “Embedded Systems: Architecture and Programming”, Tata
McGraw Hill, 2008.

RTOS and IDE for
Embedded System Design

ARM MICROCONTROLLER & EMBEDDED SYSTEMS (18EC62)

MODULE – 5

Operating System
Basics

Operating System Basics
• The operating system acts as a bridge between the user

applications/tasks and the underlying system resources
through a set of system functionalities and services.

• The OS manages the system resources and makes them
available to the user applications/tasks on a need basis.

• The primary functions of an operating system are:
• Make the system convenient to use
• Organise and manage the system resources efficiently and

correctly

Operating System Architecture
• Figure gives an insight into the

basic components of an
operating system and their
interfaces with rest of the
world.

User Applications

Underlying Hardware

K
er

n
el

 S
er

vi
ce

s

Memory Management

Process Management

Time Management

File System Management

I/O System Management

Application
Programming
Interface (API)

Device Driver
Interface

Fig: The Operating System Architecture

The Kernel

• The kernel is the core of the operating system and is responsible for
managing the system resources and the communication among the
hardware and other system services.

• Kernel acts as the abstraction layer between system resources and
user applications.

• Kernel contains a set of system libraries and services.

The Kernel (continued)

• For a general purpose OS, the kernel contains different services for
handling the following:

• Process Management

• Primary Memory Management

• File System Management

• I/O System (Device) Management

• Secondary Storage Management

• Protection Systems

• Interrupt Handler

Process Management
• Process management deals with managing the

processes/tasks.

• Process management includes
• Setting up the memory space for the process
• Loading the process's code into the memory space
• Allocating system resources
• Scheduling and managing the execution of the process
• Setting up and managing the Process Control Block (PCB)
• Inter Process Communication and synchronisation
• Process termination/deletion, etc.

Primary Memory Management
• The term primary memory refers to the volatile memory (RAM)

where processes are loaded and variables and shared data
associated with each process are stored.

• The Memory Management Unit (MMU) of the kernel is responsible
for
• Keeping track of which part of the memory area is currently used

by which process

• Allocating and De-allocating memory space on a need basis
(Dynamic memory allocation)

File System Management
• File is a collection of related information.

• A file could be a program (source code or executable), text files, image files, word
documents, audio/video files, etc.

• The file system management service of Kernel is responsible for
• The creation, deletion and alteration of files

• Creation, deletion and alteration of directories

• Saving of files in the secondary storage memory (e.g. Hard disk storage)

• Providing automatic allocation of file space based on the amount of free space available

• Providing a flexible naming convention for the files

• The various file system management operations are OS dependent.
• For example, the kernel of Microsoft DOS OS supports a specific set of file system

management operations and they are not the same as the file system operations supported
by UNIX Kernel.

I/O System (Device) Management
• Kernel is responsible for routing the I/O requests coming from different user

applications to the appropriate I/O devices of the system.

• In a well-structured OS, the direct accessing of I/O devices are not allowed and the
access to them are provided through a set of Application Programming Interfaces
(APIs) exposed by the kernel.

• The kernel maintains a list of all the I/O devices of the system.
• May be available in advance or updated dynamically as and when a new device is installed.

• The service Device Manager of the kernel is responsible for handling all I/O device
related operations.

• The kernel talks to the I/O device through a set of low-level systems calls, which are
implemented in a service called device drivers.

• Device Manager is responsible for
• Loading and unloading of device drivers
• Exchanging information and the system specific control signals to and from the device

Secondary Storage Management
• The secondary storage management deals with managing the secondary

storage memory devices, if any, connected to the system.

• Secondary memory is used as backup medium for programs and data
since the main memory is volatile.

• In most of the systems, the secondary storage is kept in disks (Hard Disk).

• The secondary storage management service of kernel deals with
• Disk storage allocation

• Disk scheduling (Time interval at which the disk is activated to backup data)

• Free Disk space management

Protection Systems
• Most of the modern operating systems are designed in such a way to support

multiple users with different levels of access permissions.
• E.g. ‘Administrator’, ‘Standard’, ‘Restricted’ permissions in Windows XP.

• Protection deals with implementing the security policies to restrict the access
to both user and system resources by different applications or processes or
users.

• ln multiuser supported operating systems, one user may not be allowed to
view or modify the whole or portions of another user's data or profile details.

• In addition, some application may not granted with permission to make use of
some of the system resources.
• This kind of protection is provided by the protection services running within the

kernel.

Interrupt Handler
• Kernel provides handler mechanism for all external/internal

interrupts generated by the system.

Kernel Space and User Space
• The applications/services are classified into two categories:

• User applications
• Kernel applications

• Kernel Space is the memory space at which the kernel code is
located
• Kernel applications/services are kept in this contiguous area of primary

(working) memory.
• It is protected from the unauthorised access by user

programs/applications.

• User Space is the memory area where user applications are loaded
and executed.

Kernel Space and User Space (continued)
• The partitioning of memory into kernel and user space is purely OS dependent.

• Some OS implement this kind of partitioning and protection whereas some OS do
not segregate the kernel and user application code storage into two separate areas.

• In an operating system with virtual memory support, the user applications are
loaded into its corresponding virtual memory space with demand paging
technique.
• The entire code for the user application need not be loaded to the main (primary)

memory at once.
• The user application code is split into different pages and these pages are loaded

into and out of the main memory area on a need basis.
• The act of loading the code into and out of the main memory is termed as

'Swapping’.

• Swapping happens between the main (primary) memory and secondary storage
memory.

Monolithic Kernel and Microkernel
• The kernel forms the heart of an operating system.

• Different approaches are adopted for building an Operating System
kernel.

• Based on the kernel design, kernels can be classified into
• Monolithic Kernel

• Microkernel

Monolithic Kernel
• In monolithic kernel architecture, all kernel services run in the kernel

space.

• Here all kernel modules run within the same memory space under a
single kernel thread.

• The tight internal integration of kernel modules in monolithic kernel
architecture allows the effective utilisation of the low-level features of
the underlying system.

• The major drawback of monolithic kernel is that any error or failure in
any one of the kernel modules leads to the crashing of the entire kernel
application.

• LINUX, SOLARIS, MS-DOS kernels are examples of monolithic kernel.

Monolithic Kernel (continued)
• The architecture representation of a monolithic kernel is given in

the figure.

Applications

Monolithic kernel with all
operating system services
running in kernel space

Fig: The Monolithic Kernel Model

Microkernel
• The microkernel design incorporates only the essential set of Operating

System services into the kernel.

• The rest of the Operating System services are implemented in programs
known as 'Servers' which runs in user space.

• This provides a 'highly modular design and OS-neutral abstract to the
kernel.

• Memory management, process management, timer systems and
interrupt handlers are the essential services, which forms the part of the
microkernel.

• Mach, QNX, Minix 3 kernels are examples for microkernel.

Microkernel (continued)
• The architecture representation of a microkernel is shown in the

figure.

Fig: The Microkernel Model

Services (kernel
services running in

user space)

Microkernel with essential
services like memory
management, process

management, timer system, etc.

Applications

Microkernel (continued)
• Microkernel based design approach offers the following benefits:
• Robustness
• If a problem is encountered in any of the services, which runs as 'Server'

application, the same can be reconfigured and re-started without the need for re-
starting the entire OS.

• Thus, this approach is highly useful for systems, which demands high 'availability’.

• Since the services which run as 'Servers' are running on a different memory space,
the chances of corruption of kernel services are ideally zero.

• Configurability
• Any service which runs as 'Server' application can be changed without the need to

restart the whole system.

• This makes the system dynamically configurable.

Types of Operating Systems

Types of Operating Systems

• Depending on the type of kernel and kernel services, purpose and
type of computing systems where the OS is deployed and the
responsiveness to applications, Operating Systems are classified
into different types.

• General Purpose Operating System (GPOS)

• Real-Time Operating System (RTOS)

General Purpose Operating System (GPOS)

• The operating systems which are deployed in general computing systems are referred
as General Purpose Operating Systems (GPOS).

• The kernel of such a GPOS is more generalised and it contains all kinds of services
required for executing generic applications.

• General purpose operating systems are often quite non-deterministic in behaviour.
• Their services can inject random delays into application software and may cause slow

responsiveness of an application at unexpected times.

• GPOS are usually deployed in computing systems where deterministic behaviour is not
an important criterion.

• Personal Computer/Desktop system is a typical example for a system where GPOSs are
deployed.

• Windows XP/MS-DOS etc. are examples for General Purpose Operating Systems.

Real-Time Operating System (RTOS)
• 'Real-Time' implies deterministic timing behaviour.

• Deterministic timing behaviour in RTOS context means the OS services consumes only
known and expected amounts of time regardless the number of services.

• A Real-Time Operating System or RTOS implements policies and rules concerning
time-critical allocation of a system's resources.
• The RTOS decides which applications should run in which order and how much time needs

to be allocated for each application.

• Predictable performance is the hallmark of a well-designed RTOS.

• This is best achieved by the consistent application of policies and rules.
• Policies guide the design of an RTOS.
• Rules implement those policies and resolve policy conflicts.

• Windows CE, QNX, VxWorks, MicroC/OS-II, etc. are examples of Real-Time Operating
Systems (RTOS).

The Real-Time Kernel
• The kernel of a Real-Time Operating System is referred as Real-Time kernel.

• The Real-Time kernel is highly specialised and it contains only the minimal set
of services required for running the user applications/tasks.

• The basic functions of a Real-Time kernel are:
• Task/Process Management

• Task/Process Scheduling

• Task/Process Synchronisation

• Error/Exception Handling

• Memory Management

• Interrupt Handling

• Time Management

The Real-Time Kernel (continued)

• Task/Process Management

• Deals with

• setting up the memory space for the tasks

• loading the task's code into the memory space

• allocating system resources

• setting up a Task Control Block (TCB) for the task

• task/process termination/deletion

• A Task Control Block (TCB) is used for holding the information
corresponding to a task.

The Real-Time Kernel (continued)
• TCB usually contains the following set of information:

• Task ID: Task Identification Number

• Task State: The current state of the task (e.g. State = 'Ready' for a task which is ready to execute)

• Task Type: Indicates what is the type for this task. The task can be a hard real time or soft real
time or background task.

• Task Priority: Task priority (e.g. Task priority = 1 for task with priority = 1)

• Task Context Pointer: Pointer for context saving

• Task Memory Pointers: Pointers to the code memory, data memory and stack memory for the
task

• Task System Resource Pointers: Pointers to system resources (semaphores, mutex, etc.) used by
the task

• Task Pointers: Pointers to other TCBs (TCBs for preceding, next and waiting tasks)

• Other Parameters: Other relevant task parameters

The Real-Time Kernel (continued)
• The parameters and implementation of the TCB is kernel dependent.

• The TCB parameters vary across different kernels, based on the task
management implementation.

• Task management service utilises the TCB of a task in the following
way:
• Creates a TCB for a task on creating a task

• Delete/remove the TCB of a task when the task is terminated or deleted

• Reads the TCB to get the state of a task

• Update the TCB with updated parameters on need basis (e.g. on a context
switch)

• Modify the TCB to change the priority of the task dynamically

The Real-Time Kernel (continued)

• Task/Process Scheduling

• Deals with sharing the CPU among various tasks/processes.

• A kernel application called 'Scheduler' handles the task scheduling.

• Scheduler is nothing but an algorithm implementation, which performs the
efficient and optimum scheduling of tasks to provide a deterministic
behaviour.

• Task/Process Synchronisation

• Deals with synchronising the concurrent access of a resource, which is
shared across multiple tasks and the communication between various
tasks.

The Real-Time Kernel (continued)
• Error/Exception Handling
• Deals with registering and handling the errors occurred/exceptions raised

during the execution of tasks.

• Insufficient memory, timeouts, deadlocks, deadline missing, bus error,
divide by zero, unknown instruction execution, etc. are examples of
errors/exceptions.

• Errors/Exceptions can happen at the kernel level services or at task level.
• Deadlock is an example for kernel level exception, whereas timeout is an

example for a task level exception.

• The OS kernel gives the information about the error in the form of a system call
(API).

• Watchdog timer is a mechanism for handling the timeouts for tasks.

The Real-Time Kernel (continued)
• Memory Management
• RTOS makes use of 'block' based memory allocation technique, instead of

the usual dynamic memory allocation techniques used by the GPOS.

• RTOS kernel uses blocks of fixed size of dynamic memory and the block is
allocated for a task on a need basis.

• The blocks are stored in a 'Free Buffer Queue’.

• To achieve predictable timing and avoid the timing overheads, most of the
RTOS kernels allow tasks to access any of the memory blocks without any
memory protection.

• RTOS kernels assume that the whole design is proven correct and protection is
unnecessary.

• Some commercial RTOS kernels allow memory protection as optional.

The Real-Time Kernel (continued)
• A few RTOS kernels implement Virtual Memory concept for memory

allocation if the system supports secondary memory storage (like HDD and
FLASH memory).

• In the 'block' based memory allocation, a block of fixed memory is always
allocated for tasks on need basis and it is taken as a unit.

• Hence, there will not be any memory fragmentation issues.

• The 'block' based memory allocation achieves deterministic behaviour with
the trade of limited choice of memory chunk size and suboptimal memory
usage.

The Real-Time Kernel (continued)
• Interrupt Handling
• Deals with the handling of various types of interrupts.
• Interrupts provide Real-Time behaviour to systems.
• Interrupts inform the processor that an external device or an associated

task requires immediate attention of the CPU.
• Interrupts can be either Synchronous or Asynchronous.
• Synchronous interrupts:
• Occur in sync with the currently executing task.
• Usually the software interrupts fall under this category.

• Divide by zero, memory segmentation error, etc. are examples of synchronous
interrupts.

• For synchronous interrupts, the interrupt handler runs in the same context of
the interrupting task.

The Real-Time Kernel (continued)
• Asynchronous interrupts:
• Occur at any point of execution of any task, and are not in sync with the currently

executing task.

• The interrupts generated by external devices (by asserting the interrupt line of the
processor/controller to which the interrupt line of the device is connected) connected to
the processor/controller, timer overflow interrupts, serial data reception/ transmission
interrupts, etc. are examples for asynchronous interrupts.

• For asynchronous interrupts, the interrupt handler is usually written as separate task
and it runs in a different context.

• Hence, a context switch happens while handling the asynchronous interrupts.

• Priority levels can be assigned to the interrupts and each interrupt can be
enabled or disabled individually.

• Most of the RTOS kernel implements 'Nested Interrupts' architecture.
• Interrupt nesting allows the pre-emption (interruption) of an Interrupt Service

Routine (ISR), servicing an interrupt, by a high priority interrupt.

The Real-Time Kernel (continued)
• Time Management
• Accurate time management is essential for providing precise time

reference for all applications.
• The time reference to kernel is provided by a high-resolution Real-Time

Clock (RTC) hardware chip (hardware timer).
• The hardware timer is programmed to interrupt the processor/controller at

a fixed rate.
• This timer interrupt is referred as ‘Timer tick’ and is taken as the timing

reference by the kernel.
• The 'Timer tick' interval may vary depending on the hardware timer.
• Usually the 'Timer tick' varies in the microseconds range.

• The time parameters for tasks are expressed as the multiples of the ‘Timer
tick'.

The Real-Time Kernel (continued)
• The System time is updated based on the 'Timer tick’.

• If the System time register is 32 bits wide and the 'Timer tick' interval
is 1 microsecond, the System time register will reset in

232 × 10−6 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
232 × 10−6

24 × 60 × 60
𝐷𝑎𝑦𝑠 = ~0.0497 𝐷𝑎𝑦𝑠 = 1.19 𝐻𝑜𝑢𝑟𝑠

• If the ‘Timer tick' interval is 1 millisecond, the system time register
will reset in

232 × 10−3 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 =
232 × 10−3

24 × 60 × 60
𝐷𝑎𝑦𝑠 = 49.7 𝐷𝑎𝑦𝑠 = ~50 𝐷𝑎𝑦𝑠

The Real-Time Kernel (continued)
• The 'Timer tick' interrupt is handled by the 'Timer Interrupt' handler of kernel.

• The 'Timer tick' interrupt can be utilised for implementing the following actions:

• Save the current context (Context of the currently executing task).

• Increment the System time register by one. Generate timing error and reset the System time register if
the timer tick count is greater than the maximum range available for System time register.

• Update the timers implemented in kernel (Increment or decrement the timer registers for each timer
depending on the count direction setting for each register. Increment registers with count direction
setting = 'count up' and decrement registers with count direction setting = 'count down').

• Activate the periodic tasks, which are in the idle state.

• Invoke the scheduler and schedule the tasks again based on the scheduling algorithm.

• Delete all the terminated tasks and their associated data structures (TCBs).

• Load the context for the first task in the ready queue. Due to the re-scheduling, the ready task might be
changed to a new one from the task, which was preempted by the 'Timer Interrupt' task.

Hard Real-Time
• Real-Time Operating Systems that strictly adhere to the timing

constraints for a task are referred as 'Hard Real-Time' systems.
• They must meet the deadlines for a task without any slippage.

• Missing any deadline may produce catastrophic results for Hard Real-Time Systems,
including permanent data loss and irrecoverable damages to the system/users.

• Hard Real-Time systems emphasise the principle ‘A late answer is a
wrong answer’.

• Air bag control systems and Anti-lock Brake Systems (ABS) of vehicles are
typical examples for Hard Real-Time Systems.
• Any delay in the deployment of the air bags makes the life of the passengers under

threat.

Hard Real-Time (continued)

• Hard Real-Time Systems does not implement the virtual memory
model for handling the memory.

• This eliminates the delay in swapping in and out the code
corresponding to the task to and from the primary memory.

• Most of the Hard Real-Time Systems are automatic and does not
contain a Human in the Loop (HITL).

• The presence of human in the loop for tasks introduces unexpected
delays in the task execution.

Soft Real-Time
• Real-Time Operating Systems that do not guarantee meeting deadlines, but offer the best

effort to meet the deadline are referred as 'Soft Real-Time' systems.

• Missing deadlines for tasks are acceptable for a Soft Real-time system if the frequency of
deadline missing is within the compliance limit of the Quality of Service (QoS).

• A Soft Real-Time system emphasises the principle 'A late answer is an acceptable answer, but it
could have done bit faster’.

• Soft Real-Time systems most often have a human in the loop (HITL).

• Automatic Teller Machine (ATM) is a typical example for Soft-Real-Time System.

• If the ATM takes a few seconds more than the ideal operation time, nothing fatal happens.

• An audio-video playback system is another example for Soft Real-Time system.

• No potential damage arises if a sample comes late by fraction of a second, for playback.

Tasks, Process and Threads

Task
• The term 'task' refers to something that needs to be done.

• In the operating system context, a task is defined as the program in
execution and the related information maintained by the operating
system for the program.

• Task is also known as 'Job' in the operating system context.

• A program or part of it in execution is also called a 'Process’.

• The terms 'Task', 'Job' and 'Process' refer to the same entity in the
operating system context and most often they are used interchangeably.

Process
• A 'Process' is a program, or part of it, in execution.

• Process is also known as an instance of a program in execution.

• Multiple instances of the same program can execute
simultaneously.

• A process requires various system resources like CPU for executing
the process; memory for storing the code corresponding to the
process and associated variables, I/O devices for information
exchange, etc.

• A process is sequential in execution.

The Structure of a Process
• The concept of 'Process' leads to concurrent execution (pseudo

parallelism) of tasks and thereby the efficient utilisation of the CPU and
other system resources.

• Concurrent execution is achieved through the sharing of CPU among the
processes.

• A process mimics a processor in properties and holds a set of registers,
process status, a Program Counter (PC) to point to the next executable
instruction of the process, a stack for holding the local variables
associated with the process and the code corresponding to the process.

• This can be visualised as shown in the figure.

The Structure of a Process (continued)

Stack
(Stack Pointer)

Working Registers

Status Registers

Program Counter (PC)

Process

Code memory
corresponding to the

Process

Fig: Structure of a Process

The Structure of a Process (continued)

• A process which inherits all the properties of the CPU can be
considered as a virtual processor, awaiting its turn to have its
properties switched into the physical processor.

• When the process gets its turn, its registers and the program
counter register becomes mapped to the physical registers of the
CPU.

The Structure of a Process (continued)
• From a memory perspective, the

memory occupied by the process
is segregated into three regions as
shown in the figure:
• Stack memory - holds all

temporary data such as variables
local to the process

• Data memory - holds all global data
for the process

• Code memory - contains the
program code (instructions)
corresponding to the process

Fig: Memory Organisation of a Process

Process States and State Transition
• The process traverses through a series of states during its transition from

the newly created state to the terminated state.

• The cycle through which a process changes its state from 'newly created'
to 'execution completed' is known as 'Process Life Cycle’.

• The various states through which a process traverses through during a
Process Life Cycle indicates the current status of the process with respect
to time and also provides information on what it is allowed to do next.

• The transition of a process from one state to another is known as 'State
transition’.

• Figure represents the various states and state transitions associated with
a process.

Created

Ready

Blocked

Running

Completed

Fig: Process States and State Transition Representation

Process States and State Transition (continued)

• The state at which a process is being created is referred as 'Created
State’.
• The Operating System recognises a process in the 'Created State' but no resources

are allocated to the process.

• The state, where a process is incepted into the memory and awaiting the
processor time for execution, is known as 'Ready State’.
• At this stage, the process is placed in the 'Ready list' queue maintained by the OS.

• The state where in the source code instructions corresponding to the
process is being executed is called 'Running State’.
• Running State is the state at which the process execution happens.

Process States and State Transition (continued)

• 'Blocked State/Wait State' refers to a state where a running process
is temporarily suspended from execution and does not have
immediate access to resources.

• The blocked state might be invoked by various conditions like:

• the process enters a wait state for an event to occur (e.g. Waiting for user inputs
such as keyboard input) or

• waiting for getting access to a shared resource

• A state where the process completes its execution is known as
'Completed State’.

Process Management

• Process management deals with

• creation of a process

• setting up the memory space for the process

• loading the process's code into the memory space

• allocating system resources

• setting up a Process Control Block (PCB) for the process

• process termination/deletion

Threads
• A thread is the primitive that can execute code.

• A thread is a single sequential flow of control within a process.

• 'Thread' is also known as light-weight process.

• A process can have many threads of execution.

• Different threads, which are part of a process, share the same address space;
meaning they share the data memory, code memory and heap memory area.

• Threads maintain their own thread status (CPU register values), Program
Counter (PC) and stack.

• The memory model for a process and its associated threads are given in the
figure.

Threads (continued)

Stack memory for Thread 1

Stack memory for Process Stack memory for Thread 2

Data memory for Process

Code memory for Process

Fig: Memory organisation of a Process and its associated Threads

The Concept of Multithreading
• A process/task in embedded application may be a complex or

lengthy one and it may contain various suboperations like getting
input from I/O devices connected to the processor, performing
some internal calculations/operations, updating some I/O devices
etc.

• If all the subfunctions of a task are executed in sequence, the CPU
utilisation may not be efficient.
• For example, if the process is waiting for a user input, the CPU enters

the wait state for the event, and the process execution also enters a
wait state.

The Concept of Multithreading (continued)

• Instead of this single sequential execution of the whole process, if the
task/process is split into different threads carrying out the different
subfunctionalities of the process, the CPU can be effectively utilised and when
the thread corresponding to the I/O operation enters the wait state, another
threads which do not require the I/O event for their operation can be switched
into execution.
• This leads to more speedy execution of the process and the efficient utilisation of

the processor time and resources.

• If the process is split into multiple threads, which executes a portion of the
process, there will be a main thread and rest of the threads will be created
within the main thread.

• The multithreaded architecture of a process can be better visualised with the
thread-process diagram, shown in the figure.

Fig: Process with multithreads

Code Memory

Data Memory

Stack Stack Stack

Registers Registers Registers

Thread 1 Thread 2 Thread 3

void main (void) int ChildThread1 int ChildThread2

{ (void) (void)

//create child { {

thread 1 //Do something //Do something

CreateThread (NULL,

1000,(LPTHREAD_START

_ROUTINE)ChildThread } }

1, NULL, 0,

&dwThreadID);

//create child

thread 2

CreateThread (NULL,

1000,(LPTHREAD_START

_ROUTINE)ChildThread

2, NULL, 0,

&dwThreadID);

}

Task/Process

The Concept of Multithreading (continued)

• Use of multiple threads to execute a process brings the following
advantages:
• Better memory utilisation
• Multiple threads of the same process share the address space for data memory.

• This also reduces the complexity of inter thread communication since variables can be
shared across the threads.

• Speedy execution of the process

• Since the process is split into different threads, when one thread enters a wait state, the
CPU can be utilised by other threads of the process that do not require the event, which
the other thread is waiting, for processing.

• Efficient CPU utilisation
• The CPU is engaged all time.

Thread Standards
• Thread standards deal with the different standards available for

thread creation and management.
• These standards are utilised by the operating systems for thread

creation and thread management.

• It is a set of thread class libraries.

• The commonly available thread class libraries are:
• POSIX Threads

• Win32 Threads

• Java Threads

POSIX Threads

• POSIX stands for Portable Operating System Interface.

• The POSIX.4 standard deals with the Real-Time extensions and
POSIX.4a standard deals with thread extensions.

• The POSIX standard library for thread creation and management is
'Pthreads’.

• 'Pthreads' library defines the set of POSIX thread creation and
management functions in 'C' language.

POSIX Threads (continued)

• This primitive creates a new thread for running the function start_function.

• Here pthread_t is the handle to the newly created thread and pthread_attr_t is
the data type for holding the thread attributes.

• 'start_function' is the function the thread is going to execute and arguments is
the arguments for 'start_function’.

• On successful creation of a Pthread, pthread_create() associates the Thread
Control Block (TCB) corresponding to the newly created thread to the variable
of type pthread_t (new_thread ID in our example).

int pthread_create(pthread_t *new_thread_ID, const pthread_attr_t, *attribute,

void * (*start_function) (void *), void *arguments);

POSIX Threads (continued)

• This primitive blocks the current thread and waits until the
completion of the thread pointed by it (new_thread in this example).

• All the POSIX 'thread calls' returns an integer.

• A return value of zero indicates the success of the call.

int pthread_join(pthread_t new_thread, void * *thread_status);

• Write a multithreaded application to print 'Hello I'm in main thread" from the
main thread and "Hello I'm in new thread" 5 times each, using the
pthread_create() and pthread_join() POSIX primitives.

POSIX Threads - Example

//Assumes the application is running on an OS where POSIX library is available

#include<pthread.h>

#include<stdlib.h>

#include<stdio.h>

//***

//New thread function for printing “Hello I’m in new thread”

void *new_thread(void *thread_args)

{

int i,j;

for(j=0; j<5; j++)

{

printf(“Hello I’m in new thread\n”);

for(i=0; i<10000; i++); //Wait for some time. Do nothing.

}

return NULL;

}

printf(“Hello I’m in main thread\n”);

for(i=0; i<10000; i++); //Wait for some time. Do nothing.

//***

//Start of main thread

int main (void)

{

int i,j;

pthread_t tcb;

//Create the new thread for executing new_thread function

if (pthread_create(&tcb, NULL, new_thread, NULL))

{

//New thread creation failed

printf(“Error in creating new thread\n”);

return -1;

}

for(j=0; j<5; j++)

{

}

if (pthread_join(tcb, NULL))

{

//Thread join failed

printf(“Error in Thread join\n”);

return -1;

}

return 1;

}

POSIX Threads (continued)

• The termination of a thread can happen in different ways:

• Natural termination:

• The thread completes its execution and returns to the main thread through a
simple return or by executing the pthread_exit() call.

• Forced termination:

• This can be achieved by the call pthread_cancel() or through the termination of
the main thread with exit or exec functions.

• pthread_cancel() call is used by a thread to terminate another thread.

Thread Pre-emption
• Thread pre-emption is the act of pre-empting the currently running

thread.
• It means, stopping the currently running thread temporarily.

• Thread pre-emption is performed for sharing the CPU time among
all the threads.

• The execution switching among threads is known as 'Thread context
switching’.

• Thread context switching is dependent on the Operating system's
scheduler and the type of the thread.

Types of Threads
• User Level Threads

• User level threads do not have kernel/Operating System support and they exist
solely in the running process.

• Even if a process contains multiple user level threads, the OS treats it as single
thread and will not switch the execution among the different threads of it.

• It is the responsibility of the process to schedule each thread as and when required.

• In summary, user level threads of a process are non-preemptive at thread level
from OS perspective.

• The execution switching (thread context switching) happens only when the
currently executing user level thread is voluntarily blocked.

• Hence, no OS intervention and system calls are involved in the context switching of user level
threads.

• This makes context switching of user level threads very fast.

Types of Threads (continued)
• Kernel Level Threads

• Kernel level threads are individual units of execution, which the OS treats as
separate threads.

• The OS interrupts the execution of the currently running kernel thread and
switches the execution to another kernel thread based on the scheduling
policies implemented by the OS.

• In summary, kernel level threads are pre-emptive.

• Kernel level threads involve lots of kernel overhead and involve system calls
for context switching.

• However, kernel threads maintain a clear layer of abstraction and allow
threads to use system calls independently.

Thread Binding Models
• There are many ways for binding user level threads with system/kernel

level threads.

• Many-to-One Model

• Here, many user level threads are mapped to a single kernel thread.

• In this model, the kernel treats all user level threads as single thread and the
execution switching among the user level threads happens when a currently
executing user level thread voluntarily blocks itself or relinquishes the CPU.

• Solaris Green threads and GNU Portable Threads are examples for this.

• The 'PThread’ example is an illustrative example for application with Many-
to-One thread model.

Thread Binding Models (continued)
• One-to-One Model

• Here, each user level thread is bonded to a kernel/system level thread.

• Windows XP/NT/2000 and Linux threads are examples for One-to-One
thread models.

• The modified 'PThread' example is an illustrative example for application
with One-to-One thread model.

• Many-to-Many Model

• In this model, many user level threads are allowed to be mapped to many
kernel threads.

• Windows NT/2000 with ThreadFibre package is an example for this.

Thread Process

Thread is a single unit of execution and is part of process. Process is a program in execution and contains one or
more threads.

A thread does not have its own data memory and heal
memory. It shares the data memory and heap memory
with other threads of the same process.

Process has its own code memory, data memory and stack
memory.

A thread cannot live independently; it lives within the
process.

A process contains at least one thread.

There can be multiple threads in a process. The first
thread (main thread) calls the main function and occupies
the start of the stack memory of the process.

Threads within a process share the code, data and heap
memory. Each thread holds separate memory area for
stack (share the total stack memory of the process).

Threads are very inexpensive to create. Processes are very expensive to create. Involves many OS
overhead.

Context switching is inexpensive and fast. Context switching is complex and involves lot of OS
overhead and is comparatively slower.

If a thread expires, its stack is reclaimed by the process. If a process dies, the resources allocated to it are
reclaimed by the OS and all the associated threads of the
process also die.

Thread vs. Process

Task Scheduling

Task Scheduling
• Multitasking involves the execution switching among the different tasks.

• There should be some mechanism in place to share the CPU among the different tasks
and to decide which process/task is to be executed at a given point of time.

• Determining which task/process is to be executed at a given point of time is known as
task/process scheduling.

• Scheduling policies forms the guidelines for determining which task is to be executed
when.

• The scheduling policies are implemented in an algorithm and it is run by the kernel as
a service.

• The kernel service/application, which implements the scheduling algorithm, is known
as 'Scheduler'.

Task Scheduling

• Based on the scheduling algorithm used, scheduling can be
classified into:

• Non-preemptive Scheduling

• The currently executing task/process is allowed to run until it terminates or
enters the ‘Wait’ state waiting for an I/O or system resource.

• Preemptive Scheduling

• The currently executing task/process is preempted (stopped temporarily)
and another task from the Ready queue is selected for execution.

Task Scheduling (continued)

• The process scheduling decision may take place when a process
switches its state to
1. 'Ready' state from 'Running' state

2. 'Blocked/Wait' state from 'Running' state

3. 'Ready' state from 'Blocked/Wait' state

4. 'Completed' state

• A process switches to 'Ready' state from the 'Running' state when it
is preempted.
• Hence, the type of scheduling in scenario 1 is pre-emptive.

Task Scheduling (continued)
• When a high priority process in the 'Blocked/Wait' state completes its I/O and

switches to the 'Ready' state, the scheduler picks it for execution if the
scheduling policy used is priority based preemptive.

• This is indicated by scenario 3.

• In preemptive/non-preemptive multitasking, the process relinquishes the CPU
when it enters the ‘Blocked/Wait' state or the 'Completed' state and switching
of the CPU happens at this stage.

• Scheduling under scenario 2 can be either preemptive or non-preemptive.

• Scheduling under scenario 4 can be preemptive, non-preemptive or co-
operative.

Task Scheduling (continued)
• The selection of a scheduling criterion/algorithm should consider the

following factors:
• CPU Utilisation:
• The scheduling algorithm should always make the CPU utilisation high.

• CPU utilisation is a direct measure of how much percentage of the CPU is being utilised.

• Throughput:
• This gives an indication of the number of processes executed per unit of time.

• The throughput for a good scheduler should always be higher.

• Turnaround Time (TAT):
• It is the amount of time taken by a process for completing its execution.

• It includes the time spent by the process for waiting for the main memory, time spent in the
ready queue, time spent on completing the I/O operations, and the time spent in execution.

• The turnaround time should be minimal for a good scheduling algorithm.

Task Scheduling (continued)
• Waiting Time:

• It is the amount of time spent by a process in the 'Ready' queue waiting to get the CPU
time for execution.

• The waiting time should be minimal for a good scheduling algorithm.

• Response Time:
• It is the time elapsed between the submission of a process and the first response.

• For a good scheduling algorithm, the response time should be as least as possible.

To summarise, a good scheduling algorithm has high CPU utilisation, minimum Turn Around
Time (TAT), maximum throughput and least response time.

Task Scheduling (continued)

• The various queues maintained by OS in association with CPU
scheduling are:

• Job Queue:

• Contains all the processes in the system.

• Ready Queue:

• Contains all the processes, which are ready for execution and waiting for CPU to
get their turn for execution.

• The Ready queue is empty when there is no process ready for running.

• Device Queue:

• Contains the set of processes, which are waiting for an I/O device.

Preemptive Scheduling
• In preemptive scheduling, the scheduler can preempt (stop temporarily) the

currently executing task/process and select another task from the 'Ready'
queue for execution.

• Every task in the 'Ready' queue gets a chance to execute.

• When to pre-empt a task and which task is to be picked up from the 'Ready'
queue for execution after preempting the current task is purely dependent on
the scheduling algorithm.

• A task which is preempted by the scheduler is moved to the 'Ready' queue.

• The act of moving a 'Running' process/task into the 'Ready' queue by the
scheduler, without the processes requesting for it is known as ‘Preemption’

Preemptive Scheduling Techniques
• Preemptive scheduling can be implemented in different

approaches.
• Time-based preemption

• Priority-based preemption

• The various types of preemptive scheduling adopted in
task/process scheduling are:
• Preemptive Shortest Job First (SJF)/Shortest Remaining Time (SRT)

Scheduling

• Round Robin (RR) Scheduling

• Priority Based Scheduling

Preemptive Shortest Job First (SJF)/Shortest
Remaining Time (SRT) Scheduling

• In SJF, the process with the shortest estimated run time is scheduled first, followed by
the next shortest process, and so on.

• The preemptive SJF scheduling algorithm sorts the 'Ready' queue when a new process
enters the 'Ready' queue and checks whether the execution time of the new process
is shorter than the remaining of the total estimated time for the currently executing
process.

• If the execution time of the new process is less, the currently executing process is
preempted and the new process is scheduled for execution.

• Thus preemptive SJF scheduling always compares the execution completion time (It is
same as the remaining time for the new process) of a new process entered the 'Ready'
queue with the remaining time for completion of the currently executing process and
schedules the process with shortest remaining time for execution.
• Preemptive SJF scheduling is also known as Shortest Remaining Time (SRT) scheduling .

Preemptive SJF/SRT Scheduling - Example
• Three processes with process IDs P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds respectively enter the ready queue together. A new
process P4 with estimated completion time 2 ms enters the 'Ready' queue
after 2 ms. Assume all the processes contain only CPU operation and no I/O
operations are involved. Calculate the waiting time and Turn Around Time (TAT)
for each process and the average waiting time and Turn Around Time in the
SRT scheduling.

Preemptive SJF/SRT Scheduling –
Example (continued)

P1

P2

P3

P2 is scheduled

‘Ready’ queue at 0 ms

Remaining
Time

10 ms

5 ms

7 ms

Process ID

P1

P2

P3

P4

‘Ready’ queue at 2 ms

P2 is preempted
P4 is scheduled

Remaining
Time

10 ms

Process ID

3 ms

7 ms

2 ms

P1

P2

P3

‘Ready’ queue at 4 ms

P4 is completed
P2 is scheduled

Remaining
Time

10 ms

Process ID

3 ms

7 ms

P1

P3

‘Ready’ queue at 7 ms

P2 is completed
P3 is scheduled

Remaining
Time

10 ms

Process ID

7 ms

P1

‘Ready’ queue at 14 ms

P3 is completed
P1 is scheduled

Remaining
Time

10 ms

Process ID

Preemptive SJF/SRT Scheduling –
Example (continued)

• The execution sequence can be written as below:

P2

P4

P2

P3

P1

Time (ms)

Preemptive SJF/SRT Scheduling –
Example (continued)

• The waiting time for all the processes are given as

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃2 = 0 𝑚𝑠 +

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃4 = 0 𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃3 = 7 𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃1 = 14 𝑚𝑠

4 − 2 𝑚𝑠 = 2 𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

= 2+0+7+14 𝑚𝑠 = 23 𝑚𝑠
4 4

= 5.75 𝑚𝑠

Preemptive SJF/SRT Scheduling –
Example (continued)

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) = 𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑎𝑑𝑦 𝑞𝑢𝑒𝑢𝑒 + 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃2 = 2 𝑚𝑠 + 5 𝑚𝑠 = 7 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃4 = 0 𝑚𝑠 + 2 𝑚𝑠 = 2 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃3 = 7 𝑚𝑠 + 7 𝑚𝑠 = 14 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃1 = 14 𝑚𝑠 + 10 𝑚𝑠 = 24 𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) = 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

= 7+2+14+24 𝑚𝑠 = 47 𝑚𝑠
4 4

= 11.75 𝑚𝑠

Round Robin (RR) Scheduling
• In Round Robin scheduling, each process in the 'Ready' queue is executed for a

pre-defined time slot.
• 'Round Robin' brings the message "Equal chance to all".

• The execution starts with picking up the first process in the 'Ready' queue.

• It is executed for a pre-defined time and when the pre-defined time elapses or
the process completes (before the pre-defined time slice), the next process in
the 'Ready' queue is selected for execution.

• This is repeated for all the processes in the 'Ready' queue.

• Once each process in the 'Ready' queue is executed for the pre-defined time
period, the scheduler comes back and picks the first process in the 'Ready'
queue again for execution.

• The sequence is repeated.

Round Robin (RR) Scheduling (continued)

• The 'Ready' queue can be
considered as a circular queue
in which the scheduler picks up
the first process for execution
and moves to the next till the
end of the queue and then
comes back to the beginning of
the queue to pick up the first
process.

Process 4

Process 1

Process 3

Process 2

Execution Switch Execution Switch

Execution Switch Execution Switch

Round Robin (RR) Scheduling (continued)
• The time slice is provided by the timer tick feature of the time

management unit of the OS kernel.

• Time slice is kernel dependent and it varies in the order of a few
microseconds to milliseconds.

• Round Robin scheduling ensures that every process gets a fixed amount
of-CPU time for execution.

• When the process gets its fixed time for execution is determined by the
First Come First Serve (FCFS) policy.

• If a process terminates before the elapse of the time slice, the process
releases the CPU voluntarily and the next process in the queue is
scheduled for execution by the scheduler.

Round Robin (RR) Scheduling - Example
• Three processes with process IDs P1, P2, P3 with estimated completion time 6,

4, 2 milliseconds respectively, enter the ready queue together in the order P1,
P2, P3. Calculate the waiting time and Turn Around Time (TAT) for each process
and the Average waiting time and Turn Around Time (Assuming there is no I/O
waiting for the processes) in RR algorithm with Time slice = 2 ms.

P1

P2

P3

P1 is scheduled

‘Ready’ queue at 0 ms

Remaining
Time

6 ms

4 ms

2 ms

Process ID

P2

P3

P1

‘Ready’ queue at 2 ms

P1 is preempted
P2 is scheduled

Remaining
Time

4 ms

Process ID

2 ms

4 ms

P3

P1

P2

‘Ready’ queue at 4 ms

P2 is preempted
P3 is scheduled

Remaining
Time

2 ms

Process ID

4 ms

2 ms

P1

P2

‘Ready’ queue at 6 ms

P3 is completed
P1 is scheduled

Remaining
Time

4 ms

Process ID

2 ms

‘Ready’ queue at 8 ms

P1 is preempted
P2 is scheduled

P2

P1

Remaining
Time

2 ms

Process ID

2 ms

P1

‘Ready’ queue at 10 ms

P2 is completed
P1 is scheduled

Remaining
Time

2 ms

Process ID

Round Robin (RR) Scheduling– Example
(continued)

• The execution sequence can be written as below:

P1

P2

P3

P1

P2

P1

Time (ms)

Round Robin (RR) Scheduling – Example
(continued)

• The waiting time for all the processes are given as
• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃1 = 0 𝑚𝑠 + 6 − 2 + 10 − 8 𝑚𝑠 = 6 𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃2 = 2 − 0 + 8 − 4 𝑚𝑠 = 6 𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃3 = 4 − 0 = 4 𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

= 6+6+4 𝑚𝑠 = 16 𝑚𝑠
3 3

= 5.33 𝑚𝑠

Round Robin (RR) Scheduling – Example
(continued)

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) = 𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑎𝑑𝑦 𝑞𝑢𝑒𝑢𝑒 + 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃1 = 6 𝑚𝑠 + 6 𝑚𝑠 = 12 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃2 = 6 𝑚𝑠 + 4 𝑚𝑠 = 10 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃3 = 4 𝑚𝑠 + 2 𝑚𝑠 = 6 𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) = 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

= 12+10+6 𝑚𝑠 = 28 𝑚𝑠
3 3

= 9.33 𝑚𝑠

Priority Based Scheduling
• The Priority Based Preemptive Scheduling ensures that a process with high priority is

serviced at the earliest compared to other low priority processes in the ‘Ready’ queue.
• Any high priority process entering the 'Ready' queue is immediately scheduled for

execution.

• The priority of a task/process can be indicated through various mechanisms.
• While creating the process/task, the priority can be assigned to it.
• The priority number associated with a task/process is the direct indication of its

priority.
• The priority number 0 indicates the highest priority.
• This convention need not be universal and it depends on the kernel level

implementation of the priority structure.

• Whenever a new process enters the ‘Ready’ queue, the scheduler sorts the 'Ready'
queue based on priority and picks the process with the highest level of priority for
execution.

Priority Based Scheduling - Example
• Three processes with process IDs P1, P2, P3 with estimated completion time

10, 5, 7 milliseconds and priorities 1, 3, 2 (0 – highest priority, 3 - lowest
priority) respectively enter the ready queue together. A new process P4 with
estimated completion time 6 ms and priority 0 enters the 'Ready' queue after 5
ms of start of execution of P1. Calculate the waiting time and Turn Around
Time (TAT) for each process and the Average waiting time and Turn Around
Time (Assuming there is no I/O waiting for the processes) in priority based
scheduling algorithm.

P1

P2

P3

P1 is scheduled
P1 is preempted
P4 is scheduled

P4 is completed
P1 is scheduled

‘Ready’ queue at 16 ms

P1 is completed
P3 is scheduled

‘Ready’ queue at 23 ms

P3 is completed
P2 is scheduled

‘Ready’ queue at 0 ms

Remaining
Time

10 ms

5 ms

7 ms

Process ID Priority

1

3

2

P1

P2

P3

‘Ready’ queue at 11 ms

Remaining
Time

5 ms

Process ID

5 ms

7 ms

Priority

1

3

2

P2

P3

Remaining
Time

5 ms

Process ID

7 ms

Priority

3

2

P2

Remaining
Time

5 ms

Process ID Priority

3

P1

P2

P3

P4

‘Ready’ queue at 5 ms

Remaining
Time

5 ms

Process ID

5 ms

7 ms

Priority

1

3

2

0 6 ms

Priority Based Scheduling– Example (continued)

• The execution sequence can be written as below:

P1 P4 P1 P3 P2

Time (ms)

Priority Based Scheduling – Example (continued)

• The waiting time for all the processes are given as
• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃1 = 0 𝑚𝑠 +

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃4 = 0 𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃3 = 16 𝑚𝑠

• 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑃2 = 23 𝑚𝑠

11 − 5 𝑚𝑠 = 6 𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 𝑊𝑎𝑖𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

= 6+0+16+23 𝑚𝑠 = 45 𝑚𝑠
4 4

= 11.25 𝑚𝑠

Priority Based Scheduling – Example (continued)

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) = 𝑇𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑟𝑒𝑎𝑑𝑦 𝑞𝑢𝑒𝑢𝑒 + 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃1 = 6 𝑚𝑠 + 10 𝑚𝑠 = 16 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃4 = 0 𝑚𝑠 + 6 𝑚𝑠 = 6 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃3 = 16 𝑚𝑠 + 7 𝑚𝑠 = 23 𝑚𝑠

• 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑃2 = 23 𝑚𝑠 + 5 𝑚𝑠 = 28 𝑚𝑠

• 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑢𝑟𝑛 𝐴𝑟𝑜𝑢𝑛𝑑 𝑇𝑖𝑚𝑒 (𝑇𝐴𝑇) = 𝑇𝐴𝑇 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠

= 16+6+23+28 𝑚𝑠 = 73 𝑚𝑠
4 4

= 18.25 𝑚𝑠

Task Communication

Task Communication
• In a multitasking system, multiple tasks/processes run concurrently

(in pseudo parallelism) and each process may or may not interact
between.

• Based on the degree of interaction, the processes running on an OS
are classified as
• Co-operating Processes:
• One process requires the inputs from other processes to complete its execution.

• Competing Processes:

• The competing processes do not share anything among themselves but they share the
system resources.

• The competing processes compete for the system resources such as file, display device, etc.

Task Communication (continued)
• Co-operating processes exchanges information and communicate

through the following methods:

• Co-operation through Sharing:

• The co-operating process exchange data through some shared resources.

• Co-operation through Communication:

• No data is shared between the processes.

• But they communicate for synchronisation.

Task Communication (continued)
• The mechanism through which processes/tasks communicate each other

is known as Inter Process/Task Communication (IPC).
• Inter Process Communication is essential for process co-ordination.

• The various types of Inter Process Communication (IPC) mechanisms
adopted by process are kernel (Operating System) dependent.

• Some of the important IPC mechanisms adopted by various kernels are:
• Shared Memory
• Pipes and Memory Mapped Objects

• Message Passing
• Message Queue, Mailbox and Signalling

• Remote Procedure Call and Sockets

Shared Memory
• Processes share some area of the

memory to communicate among them.

• Information to be communicated by the
process is written to the shared memory
area.

• Other processes which require this
information can read the same from the
shared memory area.

• Different mechanisms are adopted by different kernels for implementing the concept
of shared memory:

• Pipes

• Memory Mapped Objects

Process 1
Shared

memory area

Process 2

Fig.: Concept of Shared Memory

Pipes
• 'Pipe' is a section of the shared memory used by processes for

communicating.

• Pipes follow the client-server architecture.
• A process which creates a pipe is known as a pipe server and a process

which connects to a pipe is known as pipe client.

• A pipe can be considered as a conduit for information flow and has
two conceptual ends.

• It can be unidirectional, allowing information flow in one direction
or bidirectional allowing bidirectional information flow.

Pipes (continued)

• A unidirectional pipe allows the process connecting at one end of
the pipe to write to the pipe and the process connected at the
other end of the pipe to read the data, whereas a bidirectional pipe
allows both reading and writing at one end.

• The figure shows a unidirectional pipe.

Pipe
(Named/unnamed)

Fig.: Concept of Pipe for IPC

Process 2
Read

Process 1
Write

Pipes (continued)
• The implementation of 'Pipes' is OS dependent.

• Microsoft Windows supports two types of 'Pipes' for Inter Process Communication:

• Anonymous Pipes:

• The anonymous pipes are unnamed, unidirectional pipes used for data transfer between two processes.

• Named Pipes:

• Named pipe is a named, unidirectional or bi-directional pipe for data exchange between processes.

• Like anonymous pipes, the process which creates the named pipe is known as pipe server and a process
which connects to the named pipe is known as pipe client.

• With named pipes, any process can act as both client and server allowing point-to-point communication.

• Named pipes can be used for communicating between processes running on the same machine or
between processes running on different machines connected to a network.

Memory Mapped Objects
• Memory mapped object is a shared memory technique adopted by certain

Real-Time Operating Systems for allocating a shared block of memory which
can be accessed by multiple process simultaneously.

• In this approach, a mapping object is created and physical storage for it is
reserved and committed.

• A process can map the entire committed physical area or a block of it to its
virtual address space.

• All read and write operation to this virtual address space by a process is
directed to its committed physical area.

• Any process which wants to share data with other processes can map the
physical memory area of the mapped object to its virtual memory space and
use it for sharing the data.

Message Passing
• Message passing is an (a)synchronous information exchange mechanism used

for Inter Process/Thread Communication.

• The major difference between shared memory and message passing technique
is that, through shared memory lots of data can be shared whereas only
limited amount of information/data is passed through message passing.

• Also, message passing is relatively fast and free from the synchronisation overheads
compared to shared memory.

• Based on the message passing operation between the processes, message
passing is classified into:

• Message Queue

• Mailbox

• Signalling

Message Queue
• 'Message queue’ is a First-In-First-Out (FIFO) queue which stores the messages

temporarily in a system defined memory object to pass it to the desired
process.

• Usually the process which wants to talk to another process posts the message
to a message queue.

• Messages are sent and received through send and receive methods.

• send (Name of the process to which the message is to be sent, message)

• receive (Name of the process from which the message is to be received, message)

• The implementation of the message queue, send and receive methods are OS
kernel dependent.

Message Queue (continued)

Message Queue

Process 1 Process 2

Fig.: Concept of Message Queue based indirect messaging for IPC

Message Queue (continued)
• The Windows XP OS kernel maintains a single system message queue and one process/thread

specific message queue.

• A thread which wants to communicate with another thread posts the message to the system
message queue.

• The kernel picks up the message from the system message queue one at a time and examines
the message for finding the destination thread and then posts the message to the message
queue of the corresponding thread.

• The messaging mechanism is classified into synchronous and asynchronous based on the
behaviour of the message posting thread.

• In asynchronous messaging, the message posting thread just posts the message to the queue
and it will not wait for an acceptance (return) from the thread to which the message is posted.

• In synchronous messaging, the thread which posts a message enters waiting state and waits for
the message result from the thread to which the message is posted.
• The thread which invoked the send message becomes blocked and the scheduler will not pick it up for scheduling.

Mailbox
• Mailbox is an alternate form of ‘Message queue’ and it is used in RTOS for IPC

usually for one way messaging.

• The task/thread which wants to send a message to other tasks/threads creates
a mailbox for posting the messages.

• The threads which are interested in receiving the messages posted to the
mailbox by the mailbox creator thread can subscribe to the mailbox.

• The thread which creates the mailbox is known as 'mailbox server' and the
threads which subscribe to the mailbox are known as 'mailbox clients’.
• The mailbox server posts messages to the mailbox and notifies it to the clients

which are subscribed to the mailbox.

• The clients read the message from the mailbox on receiving the notification.

Mailbox (continued)

Mailbox

Task 2 Task 3 Task 4

Task 1

Post message

Broadcast
message

Broadcast
message Broadcast

message

Fig.: Concept of
Mailbox based
indirect messaging
for IPC

Mailbox (continued)
• The mailbox creation, subscription, message reading and writing are

achieved through OS kernel provided API calls.

• Mailbox and message queues are same in functionality.

• The only difference is in the number of messages supported by them.

• Both of them are used for passing data in the form of message(s) from a task to
another task(s).

• Mailbox is used for exchanging a single message between two tasks or
between an Interrupt Service Routine (ISR) and a task.

• Mailbox associates a pointer pointing to the mailbox and a wait list to hold the
tasks waiting for a message to appear in the mailbox.

Signalling

• Signalling is a primitive way of communication between
processes/threads.

• Signals are used for asynchronous notifications where one
process/thread fires a signal, indicating the occurrence of a
scenario which the other process(es)/thread(s) is waiting.

• Signals are not queued and they do not carry any data.

• E.g. Communication mechanisms used in RTX51 Tiny OS, inter
process communication in VxWorks OS Kernel are examples for
signalling.

Remote Procedure Call (RPC) and Sockets
• Remote Procedure Call (RPC) is the Inter Process Communication (IPC)

mechanism used by a process to call a procedure of another process running
on the same CPU or on a different CPU which is interconnected in a network.

• In the object oriented language terminology, RPC is also known as Remote
Invocation or Remote Method Invocation (RMI).

• RPC is mainly used for distributed applications like client-server applications.

• With RPC it is possible to communicate over a heterogeneous network (i.e.
Network where Client and server applications are running on different operating
systems).

• The CPU/process containing the procedure which needs to be invoked remotely is
known as server.

• The CPU/process which initiates an RPC request is known as client.

Remote Procedure Call (RPC) and Sockets
(continued)

CPU CPU
Process Process

Procedure

Network

TCP/IP or UDP
over Socket

Processes running on different CPUs
which are networked

Process 1

Procedure

CPU
Process 2

TCP/IP or UDP
over Socket

Processes running on the same CPU

Fig.: Concept of Remote Procedure Call (RPC) for IPC

Remote Procedure Call (RPC) and Sockets
(continued)

• It is possible to implement RPC communication with different invocation
interfaces.

• Interface Definition Language (IDL) defines the interfaces for RPC.

• Microsoft Interface Definition Language (MIDL) is the IDL implementation from
Microsoft for all Microsoft platforms.

• The RPC communication can be either Synchronous (Blocking) or Asynchronous
(Non-blocking).

• In the Synchronous communication, the process which calls the remote procedure
is blocked until it receives a response back from the other process.

• In asynchronous RPC calls, the calling process continues its execution while the
remote process performs the execution of the procedure.

• The result from the remote procedure is returned back to the caller through mechanisms like
callback functions.

Remote Procedure Call (RPC) and Sockets
(continued)

• On security front, RPC employs authentication mechanisms to
protect the systems against vulnerabilities.

• The client applications (processes) should authenticate themselves
with the server for getting access.

• Authentication mechanisms like IDs, public key cryptography (like
DES, 3DES), etc. are used by the client for authentication.

• Without authentication, any client can access the remote
procedure.
• This may lead to potential security risks.

Remote Procedure Call (RPC) and Sockets
(continued)

• Sockets are used for RPC communication.

• Socket is a logical endpoint in a two-way communication link between
two applications running on a network.

• A port number is associated with a socket so that the network layer of
the communication channel can deliver the data to the designated
application.

• Sockets are of different types, namely, Internet sockets (INET), UNIX
sockets, etc.

• The INET socket works on internet communication protocol.

• TCP/IP, UDP, etc. are the communication protocols used by INET sockets.

Remote Procedure Call (RPC) and Sockets
(continued)

• INET sockets are classified into:

• Stream sockets

• These are connection oriented and they use TCP to establish a reliable
connection.

• Datagram sockets

• These rely on UDP for establishing a connection.

• The UDP connection is unreliable when compared to TCP.

Remote Procedure Call (RPC) and Sockets
(continued)

• The client-server communication model uses a socket at the client side and a
socket at the server side.

• A port number is assigned to both of these sockets.
• The client and server should be aware of the port number associated with the

socket.
• In order to start the communication, the client needs to send a connection

request to the server at the specified port number.
• The client should be aware of the name of the server along with its port

number.
• The server always listens to the specified port number on the network.
• Upon receiving a connection request from the client, based on the success of

authentication, the server grants the connection request and a communication
channel is established between the client and server.

Remote Procedure Call (RPC) and Sockets
(continued)

• The client uses the host name and port number of server for sending
requests and server uses the client's name and port number for sending
responses.

• If the client and server applications (both processes) are running on the
same CPU, both can use the same host name and port number for
communication.

• The physical communication link between the client and server uses
network interfaces like Ethernet or Wi-Fi for data communication.

• The underlying implementation of socket is OS kernel dependent.

• Different types of OSs provide different socket interfaces.

Task Synchronisation

Task Synchronisation Issues
• In a multitasking environment, multiple processes run concurrently

(in pseudo parallelism) and share the system resources.

• The processes communicate with each other with different IPC
mechanisms including shared memory and variables.

• Imagine a situation where two processes try to access display
hardware connected to the system or two processes try to access a
shared memory area where one process tries to write to a memory
location when the other process is trying to read from this.
• This would result in unexpected results.

• This can be solved by making each process aware of the access of a
shared resource either directly or indirectly.

Task Synchronisation Issues (continued)
• The act of making processes aware of the access of shared

resources by each process to avoid conflicts is known as
‘Task/Process Synchronisation’.

• Various task communication/synchronisation issues may arise in a
multitasking environment if processes are not synchronised
properly.

• Racing

• Deadlock

Racing
• Let us have a look at the following piece of code:
#include<windows.h>

#include<stdio.h>

//***

//counter is an integer variable and Buffer is a byte array

//shared between two processes Process A and Process B

char Buffer[10] = {1,2,3,4,5,6,7,8,9,10};

short int counter = 0;

//***

//Process A

void Process_A (void){

int i;

for (i=0; i<5; i++){

if (Buffer[i]>0)

counter++;

}

}

Racing (continued)
//***

//Process B

void Process_B (void){

int j;

for (j=5; j<10; j++){

if (Buffer[j]>0)

counter++;

}

}

//***

//Main Thread

int main(){

DWORD id;

CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Process_A,(LPVOID)0,0,&id);

CreateThread(NULL,0,(LPTHREAD_START_ROUTINE)Process_B,(LPVOID)0,0,&id);

Sleep(100000);

return 0;

}

Racing (continued)

• From a programmer perspective, the value of counter will be 10 at
the end of execution of processes A & B.

• But in a real world execution, the result depends on the process
scheduling policies adopted by the OS kernel.

• The program statement counter++; looks like a single statement
from a high level programming language ('C' language) perspective.

• The low level implementation of this statement is dependent on the
underlying processor instruction set and the (cross) compiler in use.

Racing (continued)
• The low level implementation of the high level program statement counter++;

under Windows XP operating system running on an Intel Centrino Duo
processor is given below:

• Both the processes Process A and Process B contain the program statement
counter++;

mov eax, dword ptr [ebp-4] ;Load counter in Accumulator

add eax, 1 ;Increment Accumulator by 1

mov dword ptr [ebp-4], eax ;Store counter with Accumulator

Process A Process B

mov eax, dword ptr [ebp-4] mov eax, dword ptr [ebp-4]

add eax, 1 add eax, 1

mov dword ptr [ebp-4], eax mov dword ptr [ebp-4], eax

Racing (continued)

• Imagine a situation where a process switching (context switching)
happens from Process A to Process B when Process A is executing
the counter++; statement.

• Imagine that the process switching happened at the point where
Process A executed the low level instruction, 'mov eax, dword
ptr [ebp-4]' and is about to execute the next instruction 'add
eax, 1’.

• The scenario is illustrated in the figure.

Racing (continued)

……………………………………………………………………

mov eax, dword ptr [ebp-4]

add eax, 1

mov dword ptr [ebp-4], eax

……………………………………………………………………

……………………………………………………………………

mov eax, dword ptr [ebp-4]

add eax, 1

mov dword ptr [ebp-4], eax

……………………………………………………………………

Process A Process B

Context Switch

Context Switch

Fig.: Race Condition

Racing (continued)
• Process B increments the shared variable 'counter' in the middle of the

operation where Process A tries to increment it.
• When Process A gets the CPU time for execution, it starts from the point where

it got interrupted.
• Though the variable counter is incremented by Process B, Process A is unaware

of it and it increments the variable with the old value.
• This leads to the loss of one increment for the variable counter.

• This issue wouldn't have occurred if the underlying actions corresponding to
the program statement counter++; is finished in a single CPU execution cycle.

• The best way to avoid this situation is to make the access and modification of
shared variables mutually exclusive.
• Meaning when one process accesses a shared variable, prevent the other processes

from accessing it.

Racing (continued)

• To summarise, Racing or Race condition is the situation in which
multiple processes compete (race) each other to access and
manipulate shared data concurrently.

• In a Race condition, the final value of the shared data depends on
the process which acted on the data finally.

Deadlock
• A race condition produces

incorrect results, whereas a
deadlock condition creates a
situation where none of the
processes are able to make any
progress in their execution,
resulting in a set of deadlocked
processes.

• This is similar to traffic jam issues
in a junction as illustrated in the
figure.

Fig.: Deadlock Visualisation

Deadlock (continued)

Process A Process B

Resource x

Resource y

Fig.: Scenario leading to deadlock

• In its simplest form, deadlock is the condition
in which a process is waiting for a resource
held by another process which is waiting for
a resource held by the first process.

• Process A holds a resource x and it wants a
resource y held by Process B.

• Process B is currently holding resource y and
it wants the resource x which is currently
held by Process A.

• Both hold the respective resources and they
compete each other to get the resource held
by the respective processes.

• The result of the competition is 'deadlock'.

• None of the competing process will be able to access the resources held by other processes
since they are locked by the respective processes.

Deadlock (continued)
• The different conditions favouring a deadlock situation are:

• Mutual Exclusion:

• The criteria that only one process can hold a resource at a time.

• Meaning processes should access shared resources with mutual exclusion.

• Typical example is the accessing of display hardware in an embedded device.

• Hold and Wait:

• The condition In which a process holds a shared resource by acquiring the lock controlling
the shared access and waiting for additional resources held by other processes.

• No Resource Preemption:

• The criteria that operating system cannot take back a resource from a process which is
currently holding it and the resource can only be released voluntarily by the process
holding it.

Deadlock (continued)
• Circular Wait:

• A process is waiting for a resource which is currently held by another process which in
turn is waiting for a resource held by the first process.

• In general, there exists a set of waiting process P0, P1 ... Pn with P0 is waiting for a
resource held by P1 and P1 is waiting for a resource held by P0 ,…., Pn is waiting for a
resource held by P0 and P0 is waiting for a resource held by Pn and so on.

• This forms a circular wait queue.

• 'Deadlock' is a result of the combined occurrence of these four conditions
listed above.

• These conditions were first described by E. G. Coffman in 1971 and it is popularly
known as Coffman conditions.

Deadlock Handling
• A smart OS may foresee the deadlock condition and will act proactively to

avoid such a situation.

• If a deadlock occurs, the reaction to it by OS is nonuniform.

• The OS may adopt any of the following techniques to detect and prevent
deadlock conditions.

• Ignore Deadlocks:

• Always assume that the system design is deadlock free.

• This is acceptable for the reason that the cost of removing a deadlock is large compared to the
chance of happening a deadlock.

• UNIX is an example for an OS following this principle.

• A life critical system cannot pretend that it is deadlock free for any reason.

Deadlock Handling (continued)
• Detect and Recover:

• This approach suggests the detection of a deadlock
situation and recovery from it.

• This is similar to the deadlock condition that may
arise at a traffic junction.

• When the vehicles from different directions compete
to cross the junction, deadlock (traffic jam) condition
is resulted.

• Once a deadlock (traffic jam) has happened at the
junction, the only solution is to back up the vehicles
from one direction and allow the vehicles from
opposite direction to cross the junction.

• If the traffic is too high, lots of vehicles may have to
be backed up to resolve the traffic jam.

• This technique is also known as 'back up cars'
technique.

Fig.: ‘Back up cars' technique for deadline recovery

Deadlock Handling (continued)
• Operating systems keep a resource graph in their memory.

• The resource graph is updated on each resource request and release.

• A deadlock condition can be detected by analysing the resource graph by graph analyser algorithms.

• Once a deadlock condition is detected, the system can terminate a process or preempt the resource
to break the deadlocking cycle.

• Avoid Deadlocks:

• Deadlock is avoided by the careful resource allocation techniques by the Operating System.

• It is similar to the traffic light mechanism at junctions to avoid the traffic jams.

• Prevent Deadlocks:

• Prevent the deadlock condition by negating one of the four conditions favouring the deadlock
situation.

Deadlock Handling (continued)
• Ensure that a process does not hold any other resources when it requests a resource.

1. A process must request all its required resource and the resources should be allocated before
the process begins its execution.

2. Grant resource allocation requests from processes only if the process does not hold a resource
currently.

• Ensure that resource preemption (resource releasing) is possible at operating system level.

1. Release all the resources currently held by a process if a request made by the process for anew
resource is not able to fulfil immediately.

2. Add the resources which are preempted (released) to a resource list describing the resources
which the process requires to complete its execution.

3. Reschedule the process for execution only when the process gets its old resources and the new
resource which is requested by the process.

Deadlock (continued)
• Livelock

• The Livelock condition is similar to the deadlock condition except that a process in
livelock condition changes its state with time.

• While in deadlock a process enters in wait state for a resource and continues in that
state forever without making any progress in the execution, in a livelock condition a
process always does something but is unable to make any progress in the execution
completion.

• The livelock condition is better explained with the real world example, two people
attempting to cross each other in a narrow corridor.
• Both the persons move towards each side of the corridor to allow the opposite person to cross.

• Since the corridor is narrow, none of them are able to cross each other.

• Here both of the persons perform some action but still they are unable to achieve their target, cross
each other.

Deadlock (continued)

• Starvation

• In the multitasking context, starvation is the condition in which a process
does not get the resources required to continue its execution for a long time.

• As time progresses, the process starves on resource.

• Starvation may arise due to various conditions like byproduct of preventive
measures of deadlock, scheduling policies favouring high priority tasks and
tasks with shortest execution time, etc.

Task Synchronisation Techniques

• Process/Task synchronisation is essential for

1. Avoiding conflicts in resource access (racing, deadlock, starvation, livelock,
etc.) in a multitasking environment.

2. Ensuring proper sequence of operation across processes.

3. Communicating between processes.

• The code memory area which holds the program instructions (piece
of code) for accessing a shared resource (like shared memory,
shared variables, etc.) is known as ‘critical section’.

• In order to synchronise the access to shared resources, the access to the
critical section should be exclusive.

Task Synchronisation Techniques (continued)

• The exclusive access to critical section of code is provided through mutual exclusion
mechanism.

• Consider two processes Process A and Process B running on a multitasking system.

• Process A is currently running and it enters its critical section.

• Before Process A completes its operation in the critical section, the scheduler
preempts Process A and schedules Process B for execution (Process B is of higher
priority compared to Process A).

• Process B also contains the access to the critical section which is already in use by
Process A.

• If Process B continues its execution and enters the critical section which is already in
use by Process A, a racing condition will be resulted.

• A mutual exclusion policy enforces mutually exclusive access of critical sections.

Task Synchronisation Techniques (continued)

• Mutual exclusion blocks a process.

• Based on the behaviour of the blocked process, mutual exclusion
methods can be classified into two categories:

• Mutual Exclusion through Busy Waiting/Spin Lock

• Mutual Exclusion through Sleep & Wakeup

Mutual Exclusion through Sleep & Wakeup

• When a process is not allowed to access the critical section, which is
currently being locked by another process, the process undergoes 'Sleep'
and enters the 'blocked' state.

• The process which is blocked on waiting for access to the critical section
is awakened by the process which currently owns the critical section.

• The process which owns the critical section sends a wakeup message to
the process, which is sleeping as a result of waiting for the access to the
critical section, when the process leaves the critical section.

• The ‘Sleep & Wakeup' policy for mutual exclusion can be implemented in
different ways.

• Windows XP/CE OS kernels use semaphores for ‘Sleep & Wakeup’ policy
implementation for mutual exclusion.

Semaphore
• Semaphore is a ‘Sleep & Wakeup’ based mutual exclusion implementation for

shared resource access.

• Semaphore is a system resource and the process which wants to access the
shared resource can first acquire this system object to indicate the other
processes which wants the shared resource that the shared resource is
currently acquired by it.

• The resources which are shared among a process can be either for exclusive
use by a process or for using by a number of processes at a time.

• The display device of an embedded system is a typical example for the shared
resource which needs exclusive access by a process.

• The Hard disk (secondary storage) of a system is a typical example for sharing the
resource among a limited number of multiple processes.

Semaphore (continued)
• Based on the implementation of the sharing limitation of the shared

resource, semaphores are classified into two, namely 'Binary Semaphore'
and 'Counting Semaphore’.

• The Binary Semaphore provides exclusive access to shared resource by
allocating the resource to a single process at a time and not allowing the
other processes to access it when it is being owned by a process.
• Under certain OS kernel, it is referred as mutex.

• The Counting Semaphore limits the access of resources by a fixed
number of processes/threads.
• Counting Semaphore maintains a count between zero and a value.
• It limits the usage of the resource to the maximum value of the count

supported by it.

Counting Semaphore
• The Counting Semaphore limits the access of resources by a fixed number of

processes/threads.

• Counting Semaphore maintains a count between zero and a value.

• It limits the usage of the resource to the maximum value of the count supported by it.

• The state of the counting semaphore object is set to 'signalled' when the count of the
object is greater than zero.

• The count associated with a 'Semaphore object' is decremented by one when a
process/thread acquires it and the count is incremented by one when a
process/thread releases the 'Semaphore object’.

• The state of the 'Semaphore object' is set to ‘non-signalled’ when the semaphore is
acquired by the maximum number of processes/threads that the semaphore can
support (i.e. when the count associated with the 'Semaphore object' becomes zero).

Counting Semaphore (continued)
• A real world example for the counting semaphore concept is the dormitory system for

accommodation, as shown in the figure.

• A dormitory contains a fixed number of beds (say 5) and at any point of time it can be
shared by the maximum number of users supported by the dormitory.

• If a person wants to avail the dormitory facility, he/she can contact the dormitory
caretaker for checking the availability.

• If beds are available in the dorm, the caretaker will hand over the keys to the user.

• If beds are not available currently, the user can register his/her name to get notifications
when a slot is available.

• Those who are availing the dormitory share the dorm facilities like TV, telephone,
toilet, etc.

• When a dorm user vacates, he/she gives the keys back to the caretaker.

• The caretaker informs the users, who booked in advance, about the dorm availability.

Fig.: The Concept of
Counting Semaphore

Process A

Shared Memory
(Critical Section)

Counting Semaphore vs. Binary Semaphore

• Counting Semaphores are similar to Binary Semaphores in
operation.

• The only difference between Counting Semaphore and Binary
Semaphore is that

• Binary Semaphore can only be used for exclusive access, whereas

• Counting Semaphores can be used for both

• exclusive access (by restricting the maximum count value associated with the semaphore
object to one at the time of creation of the semaphore object) and

• limited access (by restricting the maximum count Value associated with the semaphore
object to the limited number at the time of creation of the semaphore object)

Binary Semaphore (Mutex)

• Binary Semaphore (Mutex) is a synchronisation object provided by
OS for process/thread synchronisation.

• Any process/thread can create a 'mutex object' and other
processes/threads of the system can use this 'mutex object' for
synchronising the access to critical sections.

• Only one process/thread can own the 'mutex object' at a time.

• The state of a mutex object is set to ‘signalled’ when it is not owned
by any process/thread, and set to ‘non-signalled’ when it is owned
by any process/thread.

Binary Semaphore (Mutex) (continued)
• A real world example for the mutex concept is the hotel accommodation system

(lodging system), as shown in the figure.
• The rooms in a hotel are shared for the public.

• Any user who pays and follows the norms of the hotel can avail the rooms for
accommodation.

• A person wants to avail the hotel room facility can contact the hotel reception for
checking the room availability.
• If room is available, the receptionist will handover the room key to the user.

• If room is not available currently, the user can book the room to get notifications when a
room is available.

• When a person gets a room, he/she is granted the exclusive access to the room
facilities like TV, telephone, toilet, etc.

• When a user vacates the room, he/she gives the keys back to the receptionist.
• The receptionist informs the users, who booked in advance, about the room's availability.

Process A

Shared Memory
(Critical Section)

Fig.: The Concept of
Binary Semaphore
(Mutex)

How to Choose an RTOS

How to Choose an RTOS

• The decision of choosing an RTOS for an embedded design is very
crucial.

• A lot of factors needs to be analysed carefully before making a
decision on the selection of an RTOS.

• The requirements that needs to be analysed in the selection of an
RTOS for an embedded design fall under two categories:

• Functional requirements

• Non-functional requirements

Functional Requirements
• Processor Support

• It is not necessary that all RTOS's support all kinds of processor
architecture.

• It is essential to ensure the processor support by the RTOS.

• Memory Requirements

• The OS requires ROM memory for holding the OS files and it is
normally stored in a non-volatile memory like FLASH.

• OS also requires working memory RAM for loading the OS services.

• Since embedded systems are memory constrained, it is essential to
evaluate the minimal ROM and RAM requirements for the OS under
consideration.

Functional Requirements (continued)
• Real-time Capabilities

• It is not mandatory that the operating system for all embedded systems need to
be Real-time and all embedded Operating systems are 'Real-time’ in behaviour.

• The task/process scheduling policies plays an important role in the 'Real-time'
behaviour of an OS.

• Analyse the real-time capabilities of the OS under consideration and the
standards met by the operating system for real-time capabilities.

• Kernel and Interrupt Latency

• The kernel of the OS may disable interrupts while executing certain services and
it may lead to interrupt latency.

• For an embedded system whose response requirements are high, this latency
should be minimal.

Functional Requirements (continued)
• Inter Process Communication and Task Synchronisation

• The implementation of Inter Process Communication and Synchronisation is
OS kernel dependent.

• Certain kernels may provide a bunch of options whereas others provide very
limited options.

• Modularisation Support

• Most of the operating systems provide a bunch of features.
• At times it may not be necessary for an embedded product for its functioning.

• It is very useful if the OS supports modularisation where in the developer
can choose the essential modules and re-compile the OS image for
functioning.

• Windows CE is an example for a highly modular operating system.

Functional Requirements (continued)
• Support for Networking and Communication

• The OS kernel may provide stack implementation and driver support for a bunch of
communication interfaces and networking.

• Ensure that the OS under consideration provides support for all the interfaces
required by the embedded product.

• Development Language Support
• Certain operating systems include the run time libraries required for running

applications written in languages like Java and C#.
• A Java Virtual Machine (JVM) customised for the Operating System is essential for running java

applications.

• Similarly the .NET Compact Framework (.NETCF) is required for running Microsoft .NET
applications on top of the Operating System.

• The OS may include these components as built-in component, if not, check the
availability of the same from a third party vendor for the OS under consideration.

Non-Functional Requirements
• Custom Developed or Off the Shelf
• Depending on the OS requirement, it is possible to go for the complete

development of an operating system suiting the embedded system
needs or use an off the shelf, readily available operating system, which
is either a commercial product or an Open Source product, which is in
close match with the system requirements.

• Sometimes it may be possible to build the required features by
customising an Open source OS.

• The decision on which to select is purely dependent on the
development cost, licensing fees for the OS, development time and
availability of skilled resources.

Non-Functional Requirements (continued)

• Cost

• The total cost for developing or buying the OS and maintaining it in
terms of commercial product and custom build needs to be evaluated
before taking a decision on the selection of OS.

• Development and Debugging Tools Availability

• The availability of development and debugging tools is a critical
decision making factor in the selection of an OS for embedded design.

• Certain Operating Systems may be superior in performance, but the
availability of tools for supporting the development may be limited.

• Explore the different tools available for the OS under consideration.

Non-Functional Requirements (continued)

• Ease of Use

• How easy it is to use a commercial RTOS is another important feature
that needs to be considered in the RTOS selection.

• After Sales

• For a commercial embedded RTOS, after sales in the form of e-mail,
on-call services, etc. for bug fixes, critical patch updates and support
for production issues, etc. should be analysed thoroughly.

Integration and Testing
of Embedded Hardware
and Firmware

Integration and Testing of Embedded Hardware and
Firmware – Introduction

• Integration and testing of the embedded hardware and firmware is the
immediate step following the embedded hardware and firmware
development.

• Embedded hardware and firmware are developed in various steps.

• The final embedded hardware constitute of a PCB with all necessary
components affixed to it as per the original schematic diagram.

• Embedded firmware represents the control algorithm and configuration data
necessary to implement the product requirements on the product.

• The target embedded hardware without embedding the firmware is a
dumb device and cannot function properly.
• If you power up the hardware without embedding the firmware, the device

may behave in an unpredicted manner.

Integration and Testing of Embedded Hardware and
Firmware – Introduction (continued)

• Both embedded hardware and firmware should be independently
tested (Unit Tested) to ensure their proper functioning.

• Functioning of individual hardware sections can be done by writing
small utilities which checks the operation of the specified part.

• As far as the embedded firmware is concerned, its targeted
functionalities can easily be checked by the simulator environment
provided by the embedded firmware development tool’s IDE
(Integrated Development Environment).

Integration of Hardware and Firmware
• Integration of hardware and firmware deals with the embedding of firmware into the

target hardware board.

• It is the process of 'Embedding Intelligence' to the product.

• For non-operating system based embedded products, if the processor/controller
contains internal memory and the total size of the firmware is fitting into the code
memory area, the code memory is downloaded into the target controller/processor.

• If the processor/controller does not support built in code memory or the size of the
firmware is exceeding the memory size supported by the target processor/controller,
an external dedicated EPROM/FLASH memory chip is used for holding the firmware.

• This chip is interfaced to the processor/controller.

• A variety of techniques are used for embedding the firmware into the target board.

Out-of-Circuit Programming
• Out-of-circuit programming is performed

outside the target board.

• The processor or memory chip into which
the firmware needs to be embedded is
taken out of the target board and it is
programmed with the help of a
programming device (also called
programmer).

Fig.: Firmware Embedding Tool –
Device Programmer: LabTool-48UXP

• The programming device is a dedicated unit which contains the
necessary hardware circuit to generate the programming signals.

Out-of-Circuit Programming (continued)
• The programmer contains a ZIF socket

with locking pin to hold the device to be
programmed.

• The programming device will be under
the control of a utility program running
on a PC.

• Usually the programmer is interfaced to
the PC through RS-232C/USB/Parallel
Port Interface.

• The commands to control the
programmer are sent from the utility
program to the programmer through the
interface.

Fig.: Universal Programmer

Out-of-Circuit Programming (continued)

Fig.: Interfacing of Device Programmer with PC

Out-of-Circuit Programming (continued)
• The sequence of operations for embedding the firmware with a

programmer is listed below:
1. Connect the programming device to the specified port of PC (USB/COM

port/parallel port).

2. Power up the device (Ensure that the power indication LED is ON).

3. Execute the programming utility on the PC and ensure proper connectivity
is established between PC and programmer. In case of error, turn off
device power and try connecting it again.

4. Unlock the ZIF socket by turning the lock pin.

5. Insert the device to be programmed into the open socket.

6. Lock the ZIF socket.

Out-of-Circuit Programming (continued)
7. Select the device name from the list of supported devices.

8. Load the hex file which is to be embedded into the device.

9. Program the device by 'Program' option of utility program.

10. Wait till the completion of programming operation (Till busy LED of
programmer is OFF).

11. Ensure that programming is successful by checking the status LED on
the programmer (Usually 'Green' for success and 'Red' for error
condition) or by noticing the feedback from the utility program.

12. Unlock the ZIF socket and take the device out of programmer.

Out-of-Circuit Programming (continued)
• Once the firmware is successfully embedded into the device, insert the

device into the board, power up the board and test it for the required
functionalities.

• If you want the firmware to be protected against unwanted external
access, and if the device is supporting memory protection, enable the
memory protection on the utility before programming the device.

• The programmer usually erases the existing content of the chip before
programming the chip.
• Only EEPROM and FLASH memory chips are erasable by the programmer.
• Some old embedded systems may be built around UVEPROM chips and such

chips should be erased using a separate 'UV Chip Eraser' before
programming.

Out-of-Circuit Programming (continued)
• Drawbacks

• The major drawback of out-of-circuit programming is the high development
time.
• Whenever the firmware is changed, the chip should be taken out of the development

board for re-programming.
• This is tedious and prone to chip damages due to frequent insertion and removal.

• The programmer facilitates programming of only one chip at a time and it is not suitable
for batch production.
• Can be resolved using a 'Gang Programmer’, which contains multiple ZIF sockets (4 to 8)

and capable of programming multiple devices at a time.

• But it is bit expensive compared to an ordinary programmer.

• Another big drawback of out-of-circuit programming is that once the product is
deployed in the market in a production environment, it is very difficult to upgrade
the firmware.

Out-of-Circuit Programming (continued)

Fig.: Gang Programmer

Out-of-Circuit Programming (continued)

• Applications

• The out-of-system programming technique is used for firmware
integration for low end embedded products which runs without an
operating system.

• Out-of-circuit programming is commonly used for development of low
volume products and Proof of Concept (PoC) product Development.

In System Programming (ISP)
• Here, the programming is done 'within the system', meaning the

firmware is embedded into the target device without removing it from
the target board.

• It is the most flexible and easy way of firmware embedding.
• The only pre-requisite is that the target device must have an ISP support.

• Apart from the target board, PC, ISP cable and ISP utility, no other
additional hardware is required for ISP.

• The target board can be interfaced to the utility program running on PC
through Serial Port/Parallel Port/USB.

• The communication between the target device and ISP utility will be in a
serial format.
• The serial protocols used for ISP may be 'Joint Test Action Group (JTAG)' or

'Serial Peripheral Interface (SPI)' or any other proprietary protocol.

In System Programming (ISP) (continued)

• In order to perform ISP operations, the target device should be
powered up in a special ‘ISP mode’.

• ISP mode allows the device to communicate with an external host,
such as a PC or terminal, through a serial interface.

• The device receives commands and data from the host, erases and
reprograms code memory according to the received command.

• Once the ISP operations are completed, the device is re-configured
so that it will operate normally by applying a reset or a re-power
up.

In System Programming (ISP) (continued)

• Devices with SPI - In System Programming support contains a built-
in SPI interface (Serial Peripheral Interface) and the on-chip
EEPROM or FLASH memory is programmed through this interface.

• The primary I/O lines involved in SPI - In System Programming are:

• MOSI - Master Out Slave In

• MISO - Master In Slave Out

• SCK - System Clock

• RST - Reset of Target Device

• GND - Ground of Target Device

In System Programming (ISP) (continued)
• PC acts as the master and target device acts as the slave in ISP.

• The program data is sent to the MOSI pin of target device and the device
acknowledgement is originated from the MISO pin of the device.

• SCK pin acts as the clock for data transfer.

• Since the target device works under a supply voltage less than 5V
(TTL/CMOS), it is better to connect these lines of the target device with
the parallel port of the PC.

• Since parallel port operations are also at 5V logic, no need for any other
intermediate hardware for signal conversion.

• Standard SPI-ISP utilities are feely available on the internet and there is
no need for going for writing own program.

In System Programming (ISP) (continued)
• For ISP operations, target device needs to be powered up in a pre-defined sequence.

• The power up sequence for In System Programming for Atmel's AT89S series microcontroller
family is listed below:
1. Apply supply voltage between VCC and GND pins of target chip.

2. Set RST pin to "HIGH" state.
3. If a crystal is not connected across pins XTAL1 and XTAL2, apply a 3 MHz to 24 MHz clock to XTAL1 pin

and wait for at least 10 milliseconds.

4. Enable serial programming by sending the Programming Enable serial instruction to pin MOSI/P1.5.
The frequency of the shift clock supplied at pin SCK/P1.7 needs to be less than the CPU clock at
XTAL1 divided by 40.

5. The Code or Data array is programmed one byte at a time by supplying the address and data together
with the appropriate Write instruction. The selected memory location is first erased before the new
data is written. The write cycle is self-timed and typically takes less than 2.5 ms at 5V.

6. Any memory location can be verified by using the Read instruction, which returns the content at the
selected address at serial output MISO/P1 .6.

7. After successfully programming the device, set RST pin low or turn off the chip power supply and turn
it ON to commence the normal operation.

In System Programming (ISP) (continued)
• The key player behind ISP is a factory programmed memory (ROM) called

'Boot ROM’.

• The Boot ROM normally resides at the top end of code memory space
and it varies in the order of a few Kilo Bytes.
• It contains a set of Low-level Instruction APIs and these APIs allow the

processor/controller to perform the FLASH memory programming, erasing and
reading operations.

• By default the Reset vector starts the code memory execution at location
0000H.

• If the ISP mode is enabled through the special ISP Power up sequence,
the execution will start at the Boot ROM vector location.

In System Programming (ISP) (continued)

• In System Programming technique is the best advised programming
technique for development work since the effort required to re-
program the device in case of firmware modification is very little.

• Firmware upgrades for products supporting ISP is quite simple.

In Application Programming
• In Application Programming (IAP) is a technique used by the

firmware running on the target device for modifying a selected
portion of the code memory.

• It is not a technique for first time embedding of user written
firmware.

• It modifies the program code memory under the control of the
embedded application.

• Updating calibration data, look-up tables, etc., which are stored in
code memory, are typical examples of IAP.

In Application Programming (continued)
• The Boot ROM resident API instructions which perform various functions

such as programming, erasing, and reading the Flash memory during ISP-
mode, are made available to the end-user written firmware for IAP.

• Thus, it is possible for an end-user application to perform operations on the
Flash memory.

• A common entry point to these API routines is provided for interfacing
them to the end-user's application.

• Functions are performed by setting up specific registers as required by a
specific operation and performing a call to the common entry point.
• Like any other subroutine call, after completion of the function, control will

return to the end-user's code.

In Application Programming (continued)

• The Boot ROM is shadowed with the user code memory in its
address range.

• This shadowing is controlled by a status bit.

• When this status bit is set, accesses to the internal code memory in
this address range will be from the Boot ROM.

• When cleared, accesses will be from the user's code memory.

• Hence the user should set the status bit prior to calling the
common entry point for IAP operations.

Use of Factory Programmed Chip
• It is possible to embed the firmware into the target processor/controller

memory at the time of chip fabrication itself.
• Such chips are known as 'Factory programmed chips’.

• Once the firmware design is over and the firmware achieved operational
stability, the firmware files can be sent to the chip fabricator to embed it
into the code memory.

• Factory programmed chips are convenient for mass production
applications and it greatly reduces the product development time.

• It is not recommended to use factory programmed chips for
development purpose where the firmware undergoes frequent changes.

• Factory programmed ICs are bit expensive.

Firmware Loading for Operating System Based
Devices

• The OS based embedded systems are programmed using the In System
Programming (ISP) technique.

• OS based embedded systems contain a special piece of code called 'Boot
loader' program which takes control of the OS and application firmware
embedding and copying of the OS image to the RAM of the system for
execution.

• The boot loader for such embedded systems comes as pre-loaded or it
can be loaded to the memory using the various interface supported like
JTAG.

• The boot loader contains necessary driver initialisation implementation
for initialising the supported interfaces like UART, TCP/IP etc.

Firmware Loading for Operating System Based
Devices (continued)

• Boot loader implements menu options for selecting the source for OS
image to load.

• E.g. Load from FLASH ROM, Load from Network, Load through UART etc.

• In case of the network based loading, the boot loader broadcasts the
target's presence over the network and the host machine on which the
OS image resides can identify the target device by capturing this
message.

• Once a communication link is established between the host and target
machine, the OS image can be directly downloaded to the FLASH memory of
the target device.

Embedded System
Development

Environment

Embedded System Development Environment –
Block Diagram

• The embedded system development environment consists of:

• A Development Computer (PC) or Host, which acts as the heart of the development
environment,

• Integrated Development Environment (IDE) Tool for embedded firmware
development and debugging,

• Electronic Design Automation (EDA) Tool for Embedded Hardware design,

• An emulator hardware for debugging the target board,

• Signal sources (like Function generator) for simulating the inputs to the target board,

• Target hardware debugging tools (Digital CRO, Multimeter, Logic Analyser, etc.) and

• The target hardware.

Fig.: The Embedded System
Development Environment

Embedded System Development Environment –
Block Diagram (continued)

• The Integrated Development Environment (IDE) and Electronic Design
Automation (EDA) tools are selected based on the target hardware
development requirement and they are supplied as Installable files in CDs
by vendors.

• These tools need to be installed on the host PC used for development
activities.

• These tools can be either freeware or licensed copy or evaluation versions.

• Licensed versions of the tools are fully featured and fully functional whereas
trial versions fall into two categories, tools with limited features, and full
featured copies with limited period of usage.

Integrated Development Environment (IDE)

• In embedded system development context, Integrated
Development Environment (IDE) stands for an integrated
environment for developing and debugging the target processor
specific embedded firmware.

• IDE is a software package which bundles a
• Text Editor (Source Code Editor),

• Cross-compiler (for cross platform development and compiler for same
platform development),

• Linker and

• Debugger.

Integrated Development Environment (IDE)
(continued)

• IDEs used in embedded firmware development are slightly different from the
generic IDs used for high level language based development for desktop
applications.

• In embedded applications, the IDE is either supplied by the target
processor/controller manufacturer or by third party vendors or as Open
Source.

• Keil µVision from Keil software is an example for a third party IDE, which is used for
developing embedded firmware for 8051 family microcontrollers and also ARM
microcontrollers.

• MPLAB is an IDE tool supplied by microchip for developing embedded firmware
using their PIC family of microcontrollers.

• CodeWarrior by Metrowerks is an example of IDE for ARM family of processors.

Disassembler/Decompiler
• Disassembler is a utility program which converts machine codes into target

processor specific Assembly codes/instructions.

• The process of converting machine codes into Assembly code is known as
'Disassembling’.

• In operation, disassembling is complementary to assembling/cross-assembling.

• Decompiler is the utility program for translating machine codes into
corresponding high level language instructions.

• Decompiler performs the reverse operation of compiler/cross-compiler.

• The disassemblers/decompilers for different family of processors/controllers
are different.

Disassembler/Decompiler (continued)
• Disassemblers/Decompilers are deployed in reverse engineering.

• Reverse engineering is the process of revealing the technology behind
the working of a product.

• Reverse engineering in Embedded Product development is employed to
find out the secret behind the working of popular proprietary products.

• Disassemblers/Decompilers help the reverse engineering process by
translating the embedded firmware into Assembly/high level language
instructions.

• Disassemblers/Decompilers are powerful tools for analysing the
presence of malicious codes (virus information) in an executable image.

Simulators
• Simulator is a software tool used for simulating the various conditions

for checking the functionality of the application firmware.
• The Integrated Development Environment (IDE) itself will be providing

simulator support and they help in debugging the firmware for checking
its required functionality.

• Simulators simulate the target hardware and the firmware execution can
be inspected using simulators.

• The features of simulator based debugging are:
• Purely software based
• Doesn't require a real target system
• Very primitive (Lack of featured I/O support. Everything is a simulated one)
• Lack of Real-time behaviour

Simulators (continued)
• Advantages of Simulator Based Debugging

• Simulator based debugging techniques are simple and straightforward.

• The major advantages of simulator based firmware debugging
techniques are:

• No Need for Original Target Board
• Simulator based debugging technique is purely software oriented.

• IDE's software support simulates the CPU of the target board.

• User only needs to know about the memory map of various devices within the target
board and the firmware should be written on the basis of it.

• Since the real hardware is not required, firmware development can start well in advance
immediately after the device interface and memory maps are finalised.

• This saves development time.

Simulators (continued)
• Simulate I/O Peripherals
• Simulator provides the option to simulate various I/O peripherals.

• Using simulator's I/O support, the values for I/O registers can be edited and can
be used as the input/output value in the firmware execution.

• Hence it eliminates the need for connecting I/O devices for debugging the
firmware.

• Simulates Abnormal Conditions
• With simulator's simulation support, you can input any desired value for any

parameter during debugging the firmware and can observe the control flow of
firmware.

• It really helps the developer in simulating abnormal operational environment for
firmware and helps the firmware developer to study the behaviour of the
firmware under abnormal input conditions.

Simulators (continued)
• Limitations of Simulator Based Debugging

• Deviation from Real Behaviour
• Simulation-based firmware debugging is always carried out in a development

environment where the developer may not be able to debug the firmware under
all possible combinations of input.

• Under certain operating conditions we may get some particular result and it need
not be the same when the firmware runs in a production environment.

• Lack of real-timeliness
• The major limitation of simulator based debugging is that it is not real-time in

behaviour.
• The debugging is developer driven and it is no way capable of creating a real-

time behaviour.
• Moreover in a real application the I/O condition may be varying or unpredictable.
• Simulation goes for simulating those conditions for known values.

Emulators
• Emulator is hardware device which emulates the functionalities of the target device

and allows real time debugging of the embedded firmware in a hardware
environment.

• A circuit for emulating target device remains independent of a particular target system
and processor.

• The emulator emulates the target system with extended memory and with code
downloading ability during the edit-test-debug cycles.

• Emulators maintain the original look, feel, and behaviour of the embedded system.

• Even though the cost of developing an emulator is high, it proves to be the more cost
efficient solution over time.

• Emulators allow software exclusive to one system to be used on another.

• It is more difficult to design emulators and it also requires better hardware than the
original system.

Simulator vs. Emulator
• Simulator is a software application that

precisely duplicates (mimics) the target CPU
and simulates the various features and
instructions supported by the target CPU.

• The simulator is a host-based program that
imitates the functionality and instruction set
of the target processor.

• In summary, the simulator 'simulates'

• the target board CPU.

• Emulator is a self-contained

• device which emulates

• The emulator hardware contains
emulation logic and it is hooked
debugging application running on the
development PC on one end and
the target board through some
the other end.

• In summary, the emulator 'emulates'
board CPU.

Debuggers
• Debugger is a software tool that is used to detect the source of program or

script errors, by performing step-by-step execution of application code and
viewing the content of code variables.

• Debugging, in embedded application, is the process of diagnosing the firmware
execution, monitoring the target processor's registers and memory while the
firmware is running and checking the signals from various buses of the
embedded hardware.

• Debugging process in embedded application is broadly classified into two,
namely, hardware debugging and firmware debugging.
• Hardware debugging deals with the monitoring of various bus signals and checking

the status lines of the target hardware.

• Firmware debugging deals with examining the firmware execution, execution flow,
changes to various CPU registers and status registers on execution of the firmware
to ensure that the firmware is running as per the design.

Firmware Debugging

• Firmware debugging is performed to figure out the bug or the error
in the firmware which creates the unexpected behaviour.

• There are several techniques for firmware debugging:

• Incremental EEPROM Burning Technique

• Inline Breakpoint Based Firmware Debugging

• Monitor Program Based Firmware Debugging

• In Circuit Emulator (ICE) Based Firmware Debugging

• On Chip Firmware Debugging (OCD)

Incremental EEPROM Burning Technique
• This is the most primitive type of firmware debugging technique.
• In this technique, the code is separated into different functional code units.
• Instead of burning the entire code into the EEPROM chip at once, the code is

burned in incremental order.
• This means the code corresponding to all functionalities are separately coded,

cross-compiled and burned into the chip one by one.

• In this technique, we are not doing any debugging, but we are observing the
status of firmware execution as a debug method.

• Incremental firmware burning technique is widely adopted in small, simple
system developments and in product development where time is not a big
constraint (e.g. R&D projects).
• It is also very useful in product development environments where no other debug tools are

available.

Inline Breakpoint Based Firmware Debugging

• This is another primitive method of firmware debugging.

• Within the firmware where you want to ensure that firmware execution is
reaching up to a specified point, an inline debug code is inserted immediately
after the point.

• The debug code is a printf() function which prints a string given as per the
firmware.

• The debug codes (printf() commands) can be inserted at each point where you
want to ensure the firmware execution is covering that point.

• The source code is cross-compiled along with the debug codes embedded
within it.

• The corresponding hex file is burned into the EEPROM.

• The printf() generated data can be viewed on the HyperTerminal.

Monitor Program Based Firmware Debugging

• This is the first adopted invasive method for firmware debugging.
• In this approach, a monitor program which acts as a supervisor is

developed.
• The monitor program controls the downloading of user code into the

code memory, inspects and modifies register/memory locations, allows
single stepping of source code, etc.

• The monitor program implements the debug functions as per a pre-
defined command set from the debug application interface.

• The first step in any monitor program development is determining a set
of commands for performing various operations like firmware
downloading, memory/register inspection/modification, single stepping,
etc.

Monitor Program Based Firmware Debugging
(continued)

• Once the commands for each operation is fixed, the code is written for performing the
actions corresponding to these commands.

• The commands may be received through any of the external interface of the target
processor (e.g. RS-232C serial interface/parallel interface/USB, etc.).
• The monitor program should query this interface to get commands or should handle the

command reception if the data reception is implemented through interrupts.

• On receiving a command, it is examined and the action corresponding to it is
performed.

• The entire code stuff handling the command reception and corresponding action
implementation is known as the “Monitor Program".

• After the successful completion of the ‘Monitor Program' development, it is compiled
and burned into the FLASH memory or ROM of the target board.

• The code memory containing the monitor program is known as the 'Monitor ROM'.

Monitor Program Based Firmware Debugging
(continued)

Fig.: Monitor Program Based Target Firmware Debug Setup

In Circuit Emulator (ICE) Based Firmware
Debugging

• Emulator is a special hardware device used for emulating the functionality of a
processor/controller and performing various debug operations like halt
firmware execution, set breakpoints, get or set internal RAM/CPU register, etc.

• Nowadays pure software applications which perform the functioning of a
hardware emulator is also called as 'Emulators' (though they are 'Simulators' in
operation).

• The emulator application for emulating the operation of a PDA phone for
application development is an example of a 'Software Emulator’.

• A hardware emulator is controlled by a debugger application running on the
development PC.

• Most of the IDEs incorporate debugger support for some of the emulators
commonly available in the market.

In Circuit Emulator (ICE) Based Firmware
Debugging (continued)

• Figure illustrates the different subsystems and interfaces of an 'Emulator'
device.

Fig.: In Circuit Emulator (ICE) Based Target Debugging

On Chip Firmware Debugging (OCD)
• Modern processors/controllers incorporate built in debug modules called On Chip

Debug (OCD) support.
• Though OCD adds silicon complexity and cost factor, from a developer perspective it is

a very good feature supporting fast and efficient firmware debugging.
• The On Chip Debug facilities integrated to the processor/controller are chip vendor

dependent and most of them are proprietary technologies like Background Debug
Mode (BDM), OnCE, etc.

• Some vendors add 'on chip software debug support' through JTAG (Joint Test Action
Group) port.

• Usually the on-chip debugger provides the means to set simple breakpoints, query the
internal state of the chip and single step through code.

• Background Debug Mode (BDM) and JTAG (Joint Test Action Group) are two
commonly used interfaces for OCD.

• OCD module implements dedicated registers for controlling debugging.

Target Hardware Debugging
• Hardware debugging involves the monitoring of various signals of

the target board (address/data lines, port pins, etc.), checking the
interconnection among various components, circuit continuity
checking, etc.

• The various hardware debugging tools used in embedded product
development are:
• Magnifying Glass (Lens)

• Multimeter

• Digital CRO

• Logic Analyser

• Function Generator

Magnifying Glass (Lens)
• Magnifying glass is the primary hardware debugging tool used for embedded

hardware debugging.
• A magnifying glass is a powerful visual inspection tool.

• With a magnifying glass (lens), the surface of the target board can be examined
thoroughly for dry soldering of components, missing components, improper
placement of components, improper soldering, track (PCB connection) damage, short
of tracks, etc.

• Nowadays high quality magnifying stations are available for visual inspection.

• The magnifying station incorporates magnifying glasses attached to a stand with CFL
tubes for providing proper illumination for inspection.

• The station usually incorporates multiple magnifying lenses.
• The main lens acts as a visual inspection tool for the entire hardware board whereas

the other small lens within the station is used for magnifying a relatively small area of
the board which requires thorough inspection.

Multimeter
• A multimeter is used for measuring various electrical quantities

like voltage (Both AC and DC), current (DC and AC), resistance,
capacitance, continuity checking, transistor checking, cathode
and anode identification of diode, etc.

• Any multimeter will work over a specific range for each
measurement.

• A multimeter is the most valuable tool in the toolkit of an
embedded hardware developer.

• It is the primary debugging tool for physical contact
based hardware debugging.

Multimeter

• In embedded hardware debugging, it is mainly used for
checking the circuit continuity between different points on
the board, measuring the supply voltage, checking the
signal value, polarity, etc.

• Both analog and digital versions of a multimeter are available.
• The digital version is preferred over analog the one for various reasons like

• readability, accuracy, etc.

Digital CRO
• Cathode Ray Oscilloscope (CRO) is used for waveform capturing and analysis, measurement of

signal strength, etc.

• CRO is a very good tool in analysing interference noise in the power supply line and other
signal lines.

• Monitoring the crystal oscillator signal from the target board is a typical example of the usage
of CRO for waveform capturing and analysis in target board debugging.

• CROs are available in both analog and digital versions.
• Though Digital CROs are costly, featurewise they are best suited for target board debugging

applications.

• Digital CROS are available for high frequency support and they also incorporate modern
techniques for recording waveform over a period of time, capturing waves on the basis of a
configurable event (trigger) from the target board.

• Most of the modern digital CROs contain more than one channel and it is easy to capture and
analyse various signals from the target board using multiple channels simultaneously.

• Various measurements like phase, amplitude, etc. is also possible with CROs.

Logic Analyser
• Logic analyser is used for capturing digital data (logic 1 and 0) from a digital circuitry

whereas CRO is employed in capturing all kinds of waves including logic signals.

• A logic analyser contains special connectors and clips which can be attached to the
target board for capturing digital data.

• In target board debugging applications, a logic analyser captures the states of various
port pins, address bus and data bus of the target processor/controller, etc.

• Logic analysers give an exact reflection of what happens when particular line of
firmware is running.

• This is achieved by capturing the address line logic and data line logic of target
hardware.

• Most modern logic analysers contain provisions for storing captured data, selecting a
desired region of the captured waveform, zooming selected region of the captured
waveform, etc.

Function Generator
• Function generator is not a debugging tool.

• It is an input signal simulator tool.

• A function generator is capable of producing various periodic waveforms
like sine wave, square wave, saw-tooth wave, etc. with different
frequencies and amplitude.

• Sometimes the target board may require some kind of periodic
waveform with a particular frequency as input to some part of the
board.

• Thus, in a debugging environment, the function generator serves the
purpose of generating and supplying required signals.

Boundary Scan
• Boundary scan is a technique used for testing the interconnection among

the various chips, which support JTAG interface, present in the board.

• Boundary scan is also widely used as a debugging method to watch
integrated circuit pin states, measure voltage, or analyse sub-blocks
inside an integrated circuit.

• The boundary scan test architecture provides a means to test
interconnects between integrated circuits on a board without using
physical test probes.

• It adds a boundary scan cell that includes a multiplexer and latches, to
each pin on the device.

Boundary Scan (continued)
• Boundary Scan Description Language (BSDL) is used for implementing

boundary scan tests using JTAG.
• BSDL is a subset of VHDL and it describes the JTAG implementation in a

device.

• The benefits provided by boundary scan are:
• Lower test generation costs

• Reduced test time

• Reduced time to market

• Simpler and less costly testers

• Compatibility with tester interfaces

• High-density packaging devices accommodation

References
1. Shibu K V, “Introduction to Embedded Systems”, Tata McGraw Hill, 2009.

2. Raj Kamal, “Embedded Systems: Architecture and Programming”, Tata
McGraw Hill, 2008.

@ McGraw-Hill Education

2

PROPRIETARY MATERIAL. © 2009 The McGraw-Hill Companies, Inc. All rights reserved. No part of this PowerPoint slide may be displayed, reproduced or

distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators

permitted by McGraw-Hill for their individual course preparation. If you are a student using this PowerPoint slide, you are using it without permission.

@ McGraw-Hill Education

3

Introduction to Embedded System

What is Embedded System?

An Electronic/Electro mechanical system which is designed to perform a specific

function and is a combination of both hardware and firmware (Software)

E.g. Electronic Toys, Mobile Handsets, Washing Machines, Air Conditioners,

Automotive Control Units, Set Top Box, DVD Player etc…

Embedded Systems are:

 Unique in character and behavior

With specialized hardware and software

@ McGraw-Hill Education

4

Embedded Systems Vs General Computing Systems

General Purpose System Embedded System
A system which is a combination of generic

hardware and General Purpose Operating

System for executing a variety of

applications

A system which is a combination of special purpose

hardware and embedded OS for executing a specific

set of applications

Contain a General Purpose Operating

System (GPOS)

May or may not contain an operating system for

functioning

Applications are alterable (programmable)

by user (It is possible for the end user to re-

install the Operating System, and add or

remove user applications)

The firmware of the embedded system is pre-

programmed and it is non-alterable by end-user

(There may be exceptions for systems supporting OS

kernel image flashing through special hardware

settings)

Performance is the key deciding factor on

the selection of the system. Always ‘Faster

is Better’

Application specific requirements (like performance,

power requirements, memory usage etc) are the key

deciding factors

Less/not at all tailored towards reduced

operating power requirements, options for

different levels of power management.

Highly tailored to take advantage of the power

saving modes supported by hardware and Operating

System

Response requirements are not time critical For certain category of embedded systems like

mission critical systems, the response time

requirement is highly critical

Need not be deterministic in execution

behavior

Execution behavior is deterministic for certain type

of embedded systems like ‘Hard Real Time’ systems

@ McGraw-Hill Education

5

Classification of Embedded Systems:

 Based on Generation

 Based on Complexity & Performance Requirements

 Based on deterministic behavior

 Based on Triggering

Introduction to Embedded System

@ McGraw-Hill Education

6

Embedded Systems - Classification based on Generation

First Generation: The early embedded systems built around 8bit microprocessors

like 8085 and Z80 and 4bit microcontrollers

Second Generation: Embedded Systems built around 16bit microprocessors and 8

or 16bit microcontrollers, following the first generation embedded systems

Third Generation: Embedded Systems built around high performance 16/32 bit

Microprocessors/controllers, Application Specific Instruction set processors like

Digital Signal Processors (DSPs), and Application Specific Integrated Circuits

(ASICs)

Fourth Generation: Embedded Systems built around System on Chips (SoCs),

Re-configurable processors and multicore processors

Introduction to Embedded System

@ McGraw-Hill Education

7

Embedded Systems - Classification based on Complexity &

Performance

Small Scale: The early embedded systems built around 8bit microprocessors like

8085 and Z80 and 4bit microcontrollers

Medium Scale: Embedded Systems built around 16bit microprocessors and 8 or

16bit microcontrollers, following the first generation embedded systems

Large Scale/Complex: Embedded Systems built around high performance 16/32

bit Microprocessors/controllers, Application Specific Instruction set processors

like Digital Signal Processors (DSPs), and Application Specific Integrated Circuits

(ASICs)

Introduction to Embedded System

@ McGraw-Hill Education

8

Embedded Systems - Classification based on Deterministic

Behaviour.

 The classification based on these are applicable for “Real Time” systems.

 The application/task execution behavior for an embedded systems can be either

deterministic or non-deterministic.

 Based on execution behavior , real time embedded systems are classified into

Hard and Soft.

Introduction to Embedded System

@ McGraw-Hill Education

9

Embedded Systems - Classification based on trigger.

 Embedded systems are Reactive in nature{like process control system in

industrial control applications) can be classified based on the trigger.

 Reactive systems can be either event triggered or time triggered.

Introduction to Embedded System

@ McGraw-Hill Education

10

Major Application Areas of Embedded Systems

 Consumer Electronics: Camcorders, Cameras etc.

 Household Appliances: Television, DVD players, Washing machine, Fridge, Microwave

Oven etc.

 Home Automation and Security Systems: Air conditioners, sprinklers, Intruder detection

alarms, Closed Circuit Television Cameras, Fire alarms etc.

 Automotive Industry: Anti-lock breaking systems (ABS), Engine Control, Ignition

Systems, Automatic Navigation Systems etc.

 Telecom: Cellular Telephones, Telephone switches, Handset Multimedia Applications

etc.

 Computer Peripherals: Printers, Scanners, Fax machines etc.

 Computer Networking Systems: Network Routers, Switches, Hubs, Firewalls etc.

 Health Care: Different Kinds of Scanners, EEG, ECG Machines etc.

 Measurement & Instrumentation: Digital multi meters, Digital CROs, Logic Analyzers

PLC systems etc.

 Banking & Retail: Automatic Teller Machines (ATM) and Currency counters, Point of

Sales (POS)

 Card Readers: Barcode, Smart Card Readers, Hand held Devices etc.

Introduction to Embedded System

@ McGraw-Hill Education

11

Purpose of Embedded Systems

Each Embedded Systems is designed to serve the purpose of any one

or a combination of the following tasks.

 Data Collection/Storage/Representation

 Data Communication

 Data (Signal) Processing

 Monitoring

 Control

 Application Specific User Interface

Introduction to Embedded System

@ McGraw-Hill Education

12

Performs acquisition of data from the

external world.

The collected data can be either analog or

digital

Data collection is usually done for storage,

analysis, manipulation and transmission

The collected data may be stored directly in

the system or may be transmitted to some

other systems or it may be processed by the

system or it may be deleted instantly after

giving a meaningful representation

Introduction to Embedded System

Digital Camera for Image capturing/storage/display

Photo Courtesy of Casio -Model EXILIM ex-Z850

(www.casio.com)

Purpose of Embedded Systems – Data Collection/Storage/Representation

http://www.casio.com/

@ McGraw-Hill Education

13

 Embedded Data communication systems are

deployed in applications ranging from complex

satellite communication systems to simple home

networking systems

 Embedded Data communication systems are

dedicated for data communication

 The data communication can happen through a

wired interface (like Ethernet, RS-

232C/USB/IEEE1394 etc) or wireless interface

(like Wi-Fi, GSM,/GPRS, Bluetooth, ZigBee etc)

 Network hubs, Routers, switches, Modems etc are

typical examples for dedicated data transmission

embedded systems

Introduction to Embedded System

Wireless Network Router for Data Communication

Photo Courtesy of Linksys (www.linksys.com).

A division of CISCO system

Purpose of Embedded Systems – Data Communication

http://www.linksys.com/

@ McGraw-Hill Education

14

 Embedded systems with Signal processing

functionalities are employed in applications demanding

signal processing like Speech coding, synthesis, audio

video codec, transmission applications etc

 Computational intensive systems

 Employs Digital Signal Processors (DSPs)

Introduction to Embedded System

Digital hearing Aid employing Signal

Processing Technique

Siemens TRIANO 3 Digital hearing aid;

Siemens Audiology Copyright © 2005

Purpose of Embedded Systems – Data (Signal) Processing

@ McGraw-Hill Education

15

 Embedded systems coming under this category are

specifically designed for monitoring purpose

 They are used for determining the state of some

variables using input sensors

 They cannot impose control over variables.

 Electro Cardiogram (ECG) machine for monitoring

the heart beat of a patient is a typical example for this

 The sensors used in ECG are the different Electrodes

connected to the patient’s body

Measuring instruments like Digital CRO, Digital

Multi meter, Logic Analyzer etc used in Control &

Instrumentation applications are also examples of

embedded systems for monitoring purpose

Introduction to Embedded System

Patient Monitoring system

Photo courtesy of Philips Medical Systems

(www.medical.philips.com/)

Purpose of Embedded Systems – Monitoring

http://www.medical.philips.com/

@ McGraw-Hill Education

16

 Embedded systems with control functionalities are used for imposing control over some variables

according to the changes in input variables

 Embedded system with control functionality contains both sensors and actuators

 Sensors are connected to the input port for capturing the changes in environmental variable or

measuring variable

 The actuators connected to the output port are controlled according to the changes in input

variable to put an impact on the controlling variable to bring the controlled variable to the

specified range

 Air conditioner for controlling room temperature is a typical example for embedded system with

‘Control’ functionality

 Air conditioner contains a room temperature sensing element (sensor) which may be a thermistor

and a handheld unit for setting up (feeding) the desired temperature

 The air compressor unit acts as the actuator. The compressor is controlled according to the current

room temperature and the desired temperature set by the end user.

Introduction to Embedded System

Air Conditioner for controlling room temperature

Photo Courtesy of Electrolux Corporation

(www.electrolux.com/au)

Purpose of Embedded Systems – Control

http://www.electrolux.com/au

@ McGraw-Hill Education

17

 Embedded systems which are designed for a specific

application

 Contains Application Specific User interface (rather than

general standard UI) like key board, Display units etc

 Aimed at a specific target group of users

Mobile handsets, Control units in industrial applications

etc are examples for this

Introduction to Embedded System

Patient Monitoring system

Photo courtesy of Philips Medical Systems

(www.medical.philips.com/)

Purpose of Embedded Systems – Application Specific User Interface

http://www.medical.philips.com/

@ McGraw-Hill Education

18

 Shoe developed by Adidas, which constantly adapts

its shock-absorbing characteristics to customize its

value to the individual runner, depending on

running style, pace, body weight, and running

surface

 It contains sensors, actuators and a microprocessor

unit which runs the algorithm for adapting the

shock-absorbing characteristics of the shoe

 A ‘Hall effect sensor’ placed at the top of the

“cushioning element” senses the compression and

passes it to the Microprocessor

 A micro motor actuator controls the cushioning as

per the commands from the MPU, based on the

compression sensed by the ‘Hall effect sensor’

What an innovative bonding of Embedded

Technology with Real life needs !!!

Introduction to Embedded System

Electronics-enabled “Smart” running shoes

from Adidas

Photo Courtesy of Adidas – Salomon AG

(www.adidas.com)

‘Smart’ running shoes from Adidas – The Innovative

bonding of Life Style with Embedded Technology

http://www.adidas.com/

@ McGraw-Hill Education

2

PROPRIETARY MATERIAL. © 2009 The McGraw-Hill Companies, Inc. All rights reserved. No part of this PowerPoint slide may be displayed, reproduced or

distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the limited distribution to teachers and educators

permitted by McGraw-Hill for their individual course preparation. If you are a student using this PowerPoint slide, you are using it without permission.

@ McGraw-Hill Education

3

Module 4

The Typical Embedded System

@ McGraw-Hill Education

4

The Typical Embedded System

I/p Ports

(Sensors)
O/p Ports

(Actuators)

Communication Interface

System

Core

Memory

FPGA/ASIC/DSP/SoC

Microprocessor/controller

Real World

Embedded System

Embedded

Firmware

Other supporting

Integrated Circuits &

subsystems

@ McGraw-Hill Education

5

The Core of the Embedded Systems

The core of the embedded system falls into any one of the following

categories.

 General Purpose and Domain Specific Processors

Microprocessors

Microcontrollers

Digital Signal Processors

 Programmable Logic Devices (PLDs)

 Application Specific Integrated Circuits (ASICs)

 Commercial off the shelf Components (COTS)

The Typical Embedded System

@ McGraw-Hill Education

6

Microprocessor

A silicon chip representing a Central Processing Unit (CPU), which is capable

of performing arithmetic as well as logical operations according to a pre-defined

set of Instructions, which is specific to the manufacturer

 In general the CPU contains the Arithmetic and Logic Unit (ALU), Control Unit

and Working registers

Microprocessor is a dependant unit and it requires the combination of other

hardware like Memory, Timer Unit, and Interrupt Controller etc for proper

functioning.

ntel claims the credit for developing the first Microprocessor unit Intel 4004, a 4

bit processor which was released in Nov 1971

The Typical Embedded System

@ McGraw-Hill Education

7

General Purpose Processor (GPP) Vs Application Specific

Instruction Set Processor (ASIP)

 General Purpose Processor or GPP is a processor designed for general computational tasks

 GPPs are produced in large volumes and targeting the general market. Due to the high volume

production, the per unit cost for a chip is low compared to ASIC or other specific ICs

 A typical general purpose processor contains an Arithmetic and Logic Unit (ALU) and Control Unit

(CU)

 Application Specific Instruction Set processors (ASIPs) are processors with architecture and

instruction set optimized to specific domain/application requirements like Network processing,

Automotive, Telecom, media applications, digital signal processing, control applications etc.

 ASIPs fill the architectural spectrum between General Purpose Processors and Application Specific

Integrated Circuits (ASICs)

 The need for an ASIP arises when the traditional general purpose processor are unable to meet the

increasing application needs

 Some Microcontrollers (like Automotive AVR, USB AVR from Atmel), System on Chips, Digital

Signal Processors etc are examples of Application Specific Instruction Set Processors (ASIPs)

 ASIPs incorporate a processor and on-chip peripherals, demanded by the application requirement,

program and data memory

The Typical Embedded System

@ McGraw-Hill Education

8

Microcontroller

A highly integrated silicon chip containing a CPU, scratch pad RAM, Special

and General purpose Register Arrays, On Chip ROM/FLASH memory for

program storage, Timer and Interrupt control units and dedicated I/O ports

Microcontrollers can be considered as a super set of Microprocessors

Microcontroller can be general purpose (like Intel 8051, designed for generic

applications and domains) or application specific (Like Automotive AVR from

Atmel Corporation. Designed specifically for automotive applications)

Since a microcontroller contains all the necessary functional blocks for

independent working, they found greater place in the embedded domain in place

of microprocessors

Microcontrollers are cheap, cost effective and are readily available in the market

Texas Instruments TMS 1000 is considered as the world’s first microcontroller

The Typical Embedded System

@ McGraw-Hill Education

9

The Typical Embedded System

Microprocessor Microcontroller
A silicon chip representing a Central

Processing Unit (CPU), which is capable of

performing arithmetic as well as logical

operations according to a pre-defined set of

Instructions

A microcontroller is a highly integrated chip that

contains a CPU, scratch pad RAM, Special and

General purpose Register Arrays, On Chip

ROM/FLASH memory for program storage, Timer

and Interrupt control units and dedicated I/O ports

It is a dependent unit. It requires the

combination of other chips like Timers,

Program and data memory chips, Interrupt

controllers etc for functioning

It is a self contained unit and it doesn’t require

external Interrupt Controller, Timer, UART etc for its

functioning

Most of the time general purpose in design

and operation

Mostly application oriented or domain specific

Doesn’t contain a built in I/O port. The I/O

Port functionality needs to be implemented

with the help of external Programmable

Peripheral Interface Chips like 8255

Most of the processors contain multiple built-in I/O

ports which can be operated as a single 8 or 16 or 32

bit Port or as individual port pins

Targeted for high end market where

performance is important

Targeted for embedded market where performance is

not so critical (At present this demarcation is invalid)

Limited power saving options compared to

microcontrollers

Includes lot of power saving features

Microprocessor Vs Microcontroller

@ McGraw-Hill Education

10

Digital Signal Processors (DSPs)

 Powerful special purpose 8/16/32 bit microprocessors designed specifically to meet the

computational demands and power constraints of today's embedded audio, video, and

communications applications

 Digital Signal Processors are 2 to 3 times faster than the general purpose

microprocessors in signal processing applications

 DSPs implement algorithms in hardware which speeds up the execution whereas general

purpose processors implement the algorithm in firmware and the speed of execution

depends primarily on the clock for the processors

 DSP can be viewed as a microchip designed for performing high speed computational

operations for ‘addition’, ‘subtraction’, ‘multiplication’ and ‘division’

 A typical Digital Signal Processor incorporates the following key units

 Program Memory

 Data Memory

 Computational Engine

 I/O Unit

 Audio video signal processing, telecommunication and multimedia applications are

typical examples where DSP is employed

The Typical Embedded System

@ McGraw-Hill Education

11

The Typical Embedded System

RISC CISC
Lesser no. of instructions Greater no. of Instructions

Instruction Pipelining and increased

execution speed

Generally no instruction pipelining feature

Orthogonal Instruction Set (Allows each

instruction to operate on any register and use

any addressing mode)

Non Orthogonal Instruction Set (All instructions are

not allowed to operate on any register and use any

addressing mode. It is instruction specific)

Operations are performed on registers only,

the only memory operations are load and

store

Operations are performed on registers or memory

depending on the instruction

Large number of registers are available Limited no. of general purpose registers

Programmer needs to write more code to

execute a task since the instructions are

simpler ones

Instructions are like macros in C language. A

programmer can achieve the desired functionality

with a single instruction which in turn provides the

effect of using more simpler single instructions in

RISC

Single, Fixed length Instructions Variable length Instructions

Less Silicon usage and pin count More silicon usage since more additional decoder

logic is required to implement the complex

instruction decoding.

With Harvard Architecture Can be Harvard or Von-Neumann Architecture

RISC V/s CISC Processors/Controllers

@ McGraw-Hill Education

12

Harvard V/s Von-Neumann Processor/Controller Architecture

 The terms Harvard and Von-Neumann refers to the processor architecture design.

 Microprocessors/controllers based on the Von-Neumann architecture shares a single

common bus for fetching both instructions and data. Program instructions and data are

stored in a common main memory

 Microprocessors/controllers based on the Harvard architecture will have separate data

bus and instruction bus. This allows the data transfer and program fetching to occur

simultaneously on both buses

 With Harvard architecture, the data memory can be read and written while the program

memory is being accessed. These separated data memory and code memory buses allow

one instruction to execute while the next instruction is fetched (“Pre-fetching”)

The Typical Embedded System

I/O

Single shared Bus

CPU Memory

Program

Memory
CPU Data Memory

Von-Neumann Architecture
Harvard Architecture

@ McGraw-Hill Education

13

The Typical Embedded System

Harvard Architecture Von-Neumann Architecture
Separate buses for Instruction and

Data fetching

Single shared bus for Instruction and Data

fetching

Easier to Pipeline, so high

performance can be achieved

Low performance Compared to Harvard

Architecture

Comparatively high cost Cheaper

No memory alignment problems Allows self modifying codes†

Since data memory and program

memory are stored physically in

different locations, no chances for

accidental corruption of program

memory

Since data memory and program memory

are stored physically in same chip,

chances for accidental corruption of

program memory

Harvard V/s Von-Neumann Processor/Controller Architecture

@ McGraw-Hill Education

14

Big-endian V/s Little-endian processors

 Endianness specifies the order in which the data is stored in the memory by

processor operations in a multi byte system (Processors whose word size is

greater than one byte). Suppose the word length is two byte then data can be

stored in memory in two different ways

 Higher order of data byte at the higher memory and lower order of data byte at

location just below the higher memory

 Lower order of data byte at the higher memory and higher order of data byte at

location just below the higher memory

 Little-endian means the lower-order byte of the data is stored in memory at the

lowest address, and the higher-order byte at the highest address. (The little end

comes first)

 Big-endian means the higher-order byte of the data is stored in memory at the

lowest address, and the lower-order byte at the highest address. (The big end

comes first.)

The Typical Embedded System

@ McGraw-Hill Education

15

Big-endian V/s Little-endian processors

The Typical Embedded System

Byte 0

Byte 1

Byte 2

Byte 3

Base Address + 0 Byte 0

Base Address + 1 Byte 1

Base Address + 2 Byte 2

Base Address + 3 Byte 3

0x20000 (Base Address)

0x20001 (Base Address + 1)

0x20002 (Base Address + 2)

0x20003 (Base Address + 3)

Byte 3

Byte 2

Byte 1

Byte 0

Base Address + 0 Byte 3

Base Address + 1 Byte 2

Base Address + 2 Byte 1

Base Address + 3 Byte 0

0x20000 (Base Address)

0x20001 (Base Address + 1)

0x20002 (Base Address + 2)

0x20003 (Base Address + 3)

Little-endian Operation

Big-endian Operation

@ McGraw-Hill Education

16

Load Store Operation & Instruction Pipelining

The RISC processor instruction set is orthogonal and it operates on registers. The

memory access related operations are performed by the special instructions load

and store. If the operand is specified as memory location, the content of it is

loaded to a register using the load instruction. The instruction store stores data

from a specified register to a specified memory location

The Typical Embedded System

ALU

R1 R2 R3

23

7F

00x
y

z

1

2

3 3

3

4

load R1, x

load R2, y

add R3, R1, R2

store R3, z

1

2

3

4

Load Store Operation

@ McGraw-Hill Education

17

Instruction Pipelining

 The conventional instruction execution by the processor follows the fetch-decode-execute

sequence

 The ‘fetch’ part fetches the instruction from program memory or code memory and the

decode part decodes the instruction to generate the necessary control signals

 The execute stage reads the operands, perform ALU operations and stores the result. In

conventional program execution, the fetch and decode operations are performed in sequence

 During the decode operation the memory address bus is available and if it possible to

effectively utilize it for an instruction fetch, the processing speed can be increased

 In its simplest form instruction pipelining refers to the overlapped execution of instructions

The Typical Embedded System

The Single stage pipelining concept

Fetch (PC)

Execute (PC - 1) Fetch (PC+1)

Execute (PC) Fetch (PC+2)

Execute (PC+1)

Machine Cycle 1 Machine Cycle 2 Machine Cycle 3

Clock Pulses Clock Pulses Clock Pulses

PC : Program Counter

@ McGraw-Hill Education

18

Application Specific Integrated Circuit (ASIC)

 A microchip designed to perform a specific or unique application. It is used as

replacement to conventional general purpose logic chips.

 ASIC integrates several functions into a single chip and thereby reduces the system

development cost

 Most of the ASICs are proprietary products. As a single chip, ASIC consumes very

small area in the total system and thereby helps in the design of smaller systems with

high capabilities/functionalities.

 ASICs can be pre-fabricated for a special application or it can be custom fabricated by

using the components from a re-usable ‘building block’ library of components for a

particular customer application

 Fabrication of ASICs requires a non-refundable initial investment (Non Recurring

Engineering (NRE) charges) for the process technology and configuration expenses

 If the Non-Recurring Engineering Charges (NRE) is born by a third party and the

Application Specific Integrated Circuit (ASIC) is made openly available in the market,

the ASIC is referred as Application Specific Standard Product (ASSP)

The Typical Embedded System

@ McGraw-Hill Education

19

Programmable Logic Devices (PLDs)

 Logic devices provide specific functions, including device-to-device

interfacing, data communication, signal processing, data display, timing and

control operations, and almost every other function a system must perform.

 Logic devices can be classified into two broad categories - Fixed and

Programmable. The circuits in a fixed logic device are permanent, they

perform one function or set of functions - once manufactured, they cannot be

changed

 Programmable logic devices (PLDs) offer customers a wide range of logic

capacity, features, speed, and voltage characteristics - and these devices can be

re-configured to perform any number of functions at any time

 Designers can use inexpensive software tools to quickly develop, simulate, and

test their logic designs in PLD based design. The design can be quickly

programmed into a device, and immediately tested in a live circuit

 PLDs are based on re-writable memory technology and the device is

reprogrammed to change the design

The Typical Embedded System

@ McGraw-Hill Education

20

Programmable Logic Devices (PLDs) – CPLDs and FPGA

 Field Programmable Gate Arrays (FPGAs) and Complex Programmable Logic

Devices (CPLDs) are the two major types of programmable logic devices

 FPGAs offer the highest amount of logic density, the most features, and the highest

performance.

 These advanced FPGA devices also offer features such as built-in hardwired

processors (such as the IBM Power PC), substantial amounts of memory, clock

management systems, and support for many of the latest, very fast device-to-device

signaling technologies

 FPGAs are used in a wide variety of applications ranging from data processing and

storage, to instrumentation, telecommunications, and digital signal processing

 CPLDs, by contrast, offer much smaller amounts of logic - up to about 10,000 gates

 CPLDs offer very predictable timing characteristics and are therefore ideal for critical

control applications

 CPLDs such as the Xilinx CoolRunner series also require extremely low amounts of

power and are very inexpensive, making them ideal for cost-sensitive, battery-

operated, portable applications such as mobile phones and digital handheld assistants

The Typical Embedded System

@ McGraw-Hill Education

21

Commercial off the Shelf Component (COTS)

 A Commercial off-the-shelf (COTS) product is one which is used ‘as-is’

 COTS products are designed in such a way to provide easy integration and

interoperability with existing system components

 Typical examples for the COTS hardware unit are Remote Controlled Toy Car

control unit including the RF Circuitry part, High performance, high frequency

microwave electronics (2 to 200 GHz), High bandwidth analog-to-digital

converters, Devices and components for operation at very high temperatures,

Electro-optic IR imaging arrays, UV/IR Detectors etc

 A COTS component in turn contains a General Purpose Processor (GPP) or

Application Specific Instruction Set Processor (ASIP) or Application Specific

Integrated Chip (ASIC)/Application Specific Standard Product (ASSP) or

Programmable Logic Device (PLD)

 The major advantage of using COTS is that they are readily available in the

market, cheap and a developer can cut down his/her development time to a

great extend

The Typical Embedded System

@ McGraw-Hill Education

22

Memory

 Memory is an important part of an embedded system. The memory used in embedded

system can be either Program Storage Memory (ROM) or Data memory (RAM)

 Certain Embedded processors/controllers contain built in program memory and data

memory and this memory is known as on-chip memory

The Typical Embedded System

@ McGraw-Hill Education

23

Memory – Program Storage Memory

 Stores the program instructions

 Retains its contents even after the power to it is turned off. It is generally

known as Non volatile storage memory

 Depending on the fabrication, erasing and programming techniques they are

classified into

The Typical Embedded System

Code Memory

(ROM)
FLASH NVRAM

Masked ROM

(MROM)

PROM

(OTP)
EPROM EEPROM

@ McGraw-Hill Education

24

Memory – Program Storage Memory – Masked ROM (MROM)

 One-time programmable memory. Uses hardwired technology for storing

data. The device is factory programmed by masking and metallization

process according to the data provided by the end user

 The primary advantage of MROM is low cost for high volume production.

They are the least expensive type of solid state memory

 Different mechanisms are used for the masking process of the ROM, like

 Creation of an enhancement or depletion mode transistor through channel implant

 By creating the memory cell either using a standard transistor or a high threshold

transistor. In the high threshold mode, the supply voltage required to turn ON the

transistor is above the normal ROM IC operating voltage. This ensures that the

transistor is always off and the memory cell stores always logic 0.

 The limitation with MROM based firmware storage is the inability to

modify the device firmware against firmware upgrades. Since the MROM

is permanent in bit storage, it is not possible to alter the bit information

The Typical Embedded System

@ McGraw-Hill Education

25

Memory – Program Storage Memory – Programmable Read Only

Memory (PROM) / (OTP)

 Unlike MROM it is not pre-programmed by the manufacturer

 PROM/OTP has nichrome or polysilicon wires arranged in a matrix,

these wires can be functionally viewed as fuses

 It is programmed by a PROM programmer which selectively burns the

fuses according to the bit pattern to be stored

 Fuses which are not blown/burned represents a logic “1” where as fuses

which are blown/burned represents a logic “0”.The default state is logic

“1”

 OTP is widely used for commercial production of embedded systems

whose proto-typed versions are proven and the code is finalized

 It is a low cost solution for commercial production. OTPs cannot be

reprogrammed

The Typical Embedded System

@ McGraw-Hill Education

26

Memory – Program Storage Memory – Erasable Programmable

Read Only Memory (EPROM)

 Erasable Programmable Read Only (EPROM) memory gives the flexibility to

re-program the same chip

 EPROM stores the bit information by charging the floating gate of an FET

 Bit information is stored by using an EPROM Programmer, which applies high

voltage to charge the floating gate

 EPROM contains a quartz crystal window for erasing the stored information. If

the window is exposed to Ultra violet rays for a fixed duration, the entire

memory will be erased

 Even though the EPROM chip is flexible in terms of re-programmability, it

needs to be taken out of the circuit board and needs to be put in a UV eraser

device for 20 to 30 minutes

The Typical Embedded System

@ McGraw-Hill Education

27

Memory – Program Storage Memory – Electrically Erasable

Programmable Read Only Memory (EEPROM)

 Erasable Programmable Read Only (EPROM) memory gives the flexibility to

re-program the same chip using electrical signals

 The information contained in the EEPROM memory can be altered by using

electrical signals at the register/Byte level

 They can be erased and reprogrammed within the circuit

 These chips include a chip erase mode and in this mode they can be erased in a

few milliseconds

 It provides greater flexibility for system design

 The only limitation is their capacity is limited when compared with the

standard ROM (A few kilobytes).

The Typical Embedded System

@ McGraw-Hill Education

28

Memory – Program Storage Memory – FLASH

 FLASH memory is a variation of EEPROM technology

 It combines the re-programmability of EEPROM and the high capacity

of standard ROMs

 FLASH memory is organized as sectors (blocks) or pages

 FLASH memory stores information in an array of floating gate

MOSFET transistors

 The erasing of memory can be done at sector level or page level without

affecting the other sectors or pages

 Each sector/page should be erased before re-programming

The Typical Embedded System

@ McGraw-Hill Education

29

Memory – RAM – Non Volatile RAM (NVRAM)

 Random access memory with battery backup

 It contains Static RAM based memory and a minute battery for

providing supply to the memory in the absence of external power

supply

 The memory and battery are packed together in a single package

 NVRAM is used for the non volatile storage of results of operations or

for setting up of flags etc

 The life span of NVRAM is expected to be around 10 years

 DS1744 from Maxim/Dallas is an example for 32KB NVRAM

The Typical Embedded System

@ McGraw-Hill Education

30

Memory – Read-Write Memory/Random Access Memory (RAM)

 RAM is the data memory or working memory of the controller/processor

 RAM is volatile, meaning when the power is turned off, all the contents are

destroyed

 RAM is a direct access memory, meaning we can access the desired memory

location directly without the need for traversing through the entire memory

locations to reach the desired memory position (i.e. Random Access of

memory location)

The Typical Embedded System

Read/Write

Memory (RAM)

DRAMSRAM NVRAM

@ McGraw-Hill Education

31

Memory – RAM – Static RAM (SRAM)

 Static RAM stores data in the form of Voltage. They are made up of flip-flops

 In typical implementation, an SRAM cell (bit) is realized using 6 transistors (or

6 MOSFETs). Four of the transistors are used for building the latch (flip-flop)

part of the memory cell and 2 for controlling the access.

 Static RAM is the fastest form of RAM available. SRAM is fast in operation

due to its resistive networking and switching capabilities

The Typical Embedded System

Vcc

Word Line

Bit Line B\ Bit Line B

Q3Q1

Q2 Q4

Q5 Q6

SRAM cell implementation

@ McGraw-Hill Education

32

Memory – RAM – Dynamic RAM (DRAM)

 Dynamic RAM stores data in the form of charge. They are made up of MOS

transistor gates

 The advantages of DRAM are its high density and low cost compared to

SRAM

 The disadvantage is that since the information is stored as charge it gets leaked

off with time and to prevent this they need to be refreshed periodically

 Special circuits called DRAM controllers are used for the refreshing operation.

The refresh operation is done periodically in milliseconds interval

The Typical Embedded System

DRAM cell implementation

Bit Line B

Word Line

+

-

@ McGraw-Hill Education

33

Memory – RAM – SRAM Vs DRAM)

The Typical Embedded System

SRAM Cell DRAM Cell
Made up of 6 CMOS transistors

(MOSFET)

Made up of a MOSFET and a capacitor

Doesn’t Require refreshing Requires refreshing

Low capacity (Less dense) High Capacity (Highly dense)

More expensive Less Expensive

Fast in operation. Typical access

time is 10ns

Slow in operation due to refresh

requirements. Typical access time is 60ns.

Write operation is faster than read

operation.

@ McGraw-Hill Education

34

Sensors & Actuators

Sensor:

A transducer device which converts energy from one form to another for any

measurement or control purpose. Sensors acts as input device

Eg. Hall Effect Sensor which measures the distance between the cushion and

magnet in the Smart Running shoes from adidas

Actuator:

A form of transducer device (mechanical or electrical) which converts signals to

corresponding physical action (motion). Actuator acts as an output device

Eg. Micro motor actuator which adjusts the position of the cushioning element in

the Smart Running shoes from adidas

The Typical Embedded System

@ McGraw-Hill Education

35

 Shoe developed by Adidas, which constantly adapts

its shock-absorbing characteristics to customize its

value to the individual runner, depending on

running style, pace, body weight, and running

surface

 It contains sensors, actuators and a microprocessor

unit which runs the algorithm for adapting the

shock-absorbing characteristics of the shoe

 A ‘Hall effect sensor’ placed at the top of the

“cushioning element” senses the compression and

passes it to the Microprocessor

 A micro motor actuator controls the cushioning as

per the commands from the MPU, based on the

compression sensed by the ‘Hall effect sensor’

What an innovative bonding of Embedded

Technology with Real life needs !!!

Introduction to Embedded System

Electronics-enabled “Smart” running shoes

from Adidas

Photo Courtesy of Adidas – Salomon AG

(www.adidas.com)

‘Smart’ running shoes from Adidas – The Innovative

bonding of Life Style with Embedded Technology

http://www.adidas.com/

@ McGraw-Hill Education

36

The I/O Subsystem

 The I/O subsystem of the embedded system facilitates the interaction of

the embedded system with external world

 The interaction happens through the sensors and actuators connected to

the Input and output ports respectively of the embedded system

 The sensors may not be directly interfaced to the Input ports, instead

they may be interfaced through signal conditioning and translating

systems like ADC, Optocouplers etc

The Typical Embedded System

@ McGraw-Hill Education

37

The I/O Subsystem – I/O Devices - Light

Emitting Diode (LED)

 Light Emitting Diode (LED) is an output device for visual

indication in any embedded system

 LED can be used as an indicator for the status of various

signals or situations. Typical examples are indicating the

presence of power conditions like ‘Device ON’, ‘Battery

low’ or ‘Charging of battery’ for a battery operated

handheld embedded devices

 LED is a p-n junction diode and it contains an anode and a

cathode. For proper functioning of the LED, the anode of it

should be connected to +ve terminal of the supply voltage

and cathode to the –ve terminal of supply voltage

 The current flowing through the LED must limited to a

value below the maximum current that it can conduct. A

resister is used in series between the power supply and the

resistor to limit the current through the LED

The Typical Embedded System

R

GND

Vcc

@ McGraw-Hill Education

38

The I/O Subsystem – I/O Devices – 7-Segment LED

Display

 The 7 – segment LED display is an output device for

displaying alpha numeric characters

 It contains 8 light-emitting diode (LED) segments arranged

in a special form. Out of the 8 LED segments, 7 are used

for displaying alpha numeric characters

 The LED segments are named A to G and the decimal point

LED segment is named as DP

 The LED Segments A to G and DP should be lit

accordingly to display numbers and characters

 The 7 – segment LED displays are available in two

different configurations, namely; Common anode and

Common cathode

 In the Common anode configuration, the anodes of the 8

segments are connected commonly whereas in the Common

cathode configuration, the 8 LED segments share a

common cathode line

The Typical Embedded System

@ McGraw-Hill Education

39

The I/O Subsystem – I/O Devices – 7-Segment LED Display

 Based on the configuration of the 7 – segment LED unit, the LED segment

anode or cathode is connected to the Port of the processor/controller in the

order ‘A’ segment to the Least significant port Pin and DP segment to the

most significant Port Pin.

 The current flow through each of the LED segments should be limited to

the maximum value supported by the LED display unit

 The typical value for the current falls within the range of 20mA

 The current through each segment can be limited by connecting a current

limiting resistor to the anode or cathode of each segment

The Typical Embedded System

ABCDEFGDP

Common Cathode LED Display

Cathode

ABCDEFGDP

Common Anode LED Display

Anode

@ McGraw-Hill Education

40

The I/O Subsystem – I/O Devices – Optocoupler

 Optocoupler is a solid state device to isolate two parts of a circuit. Optocoupler

combines an LED and a photo-transistor in a single housing (package)

 In electronic circuits, optocoupler is used for suppressing interference in

data communication, circuit isolation, High voltage separation,

simultaneous separation and intensification signal etc

 Optocouplers can be used in either input circuits or in output circuits

The Typical Embedded System

I/O interface

I/O interface

LED

Photo-transistor

I/p interface
LED

Photo-transistor

Microcontroller

Port Pin

Opto-Coupler

IC MCT2M

LED

Photo-transistor

Opto-Coupler

IC MCT2M

AT89C51

Port Pin
O/p interface

Vcc

Optocoupler

Optocoupler in input and output circuit

@ McGraw-Hill Education

41

The I/O Subsystem – I/O Devices – Relay

 An electro mechanical device which acts as dynamic path selectors for signals and

power

 The ‘Relay’ unit contains a relay coil made up of insulated wire on a metal core and a

metal armature with one or more contacts.

 ‘Relay’ works on electromagnetic principle. When a voltage is applied to the relay coil,

current flows through the coil, which in turn generates a magnetic field. The magnetic

field attracts the armature core and moves the contact point. The movement of the

contact point changes the power/signal flow path

The Typical Embedded System

Single Pole Single

Throw Normally

Open

R
elay

 C
o

il

R
elay

 C
o

il

R
elay

 C
o

il

Single Pole Single

Throw Normally

Closed

Single Pole Double

Throw

@ McGraw-Hill Education

42

The I/O Subsystem – I/O Devices – Relay Driver Circuit

 The Relay is normally controlled using a relay driver circuit connected to the

port pin of the processor/controller

 A transistor can be used as the relay driver. The transistor can be selected

depending on the relay driving current requirements

The Typical Embedded System

R
elay

 C
o

il

Relay Unit

Port Pin

Vcc F
reew

h
eelin

g
 D

io
d

e
Load

@ McGraw-Hill Education

43

The I/O Subsystem – I/O Devices – Push button

switch

 Push Button switch is an input device

 Push button switch comes in two configurations, namely

‘Push to Make’ and ‘Push to Break’

 The switch is normally in the open state and it makes a

circuit contact when it is pushed or pressed in the ‘Push

to Make’ configuration

 In the ‘Push to Break’ configuration, the switch is

normally in the closed state and it breaks the circuit

contact when it is pushed or pressed

 The push button stays in the ‘closed’ (For Push to Make

type) or ‘open’ (For Push to Break type) state as long as

it is kept in the pushed state and it breaks/makes the

circuit connection when it is released

 Push button is used for generating a momentary pulse

The Typical Embedded System

@ McGraw-Hill Education

44

Communication Interface

 Communication interface is essential for communicating with various subsystems of the

embedded system and with the external world

 For an embedded product, the communication interface can be viewed in two different

perspectives; namely; Device/board level communication interface (Onboard Communication

Interface) and Product level communication interface (External Communication Interface)

 Embedded product is a combination of different types of components (chips/devices)

arranged on a Printed Circuit Board (PCB). The communication channel which interconnects

the various components within an embedded product is referred as Device/board level

communication interface (Onboard Communication Interface)

 Serial interfaces like I2C, SPI, UART, 1-Wire etc and Parallel bus interface are examples of

‘Onboard Communication Interface’

 The ‘Product level communication interface’ (External Communication Interface) is

responsible for data transfer between the embedded system and other devices or modules

 The external communication interface can be either wired media or wireless media and it can

be a serial or parallel interface. Infrared (IR), Bluetooth (BT), Wireless LAN (Wi-Fi), Radio

Frequency waves (RF), GPRS etc are examples for wireless communication interface

 RS-232C/RS-422/RS 485, USB, Ethernet (TCP-IP), IEEE 1394 port, Parallel port, CF-II Slot,

SDIO, PCMCIA etc are examples for wired interfaces

The Typical Embedded System

@ McGraw-Hill Education

45

On-board Communication Interface - I2C

 Inter Integrated Circuit Bus (I2C - Pronounced ‘I square C’) is a synchronous bi-directional half

duplex (one-directional communication at a given point of time) two wire serial interface bus

 The concept of I2C bus was developed by ‘Philips Semiconductors’ in the early 1980’s. The

original intention of I2C was to provide an easy way of connection between a

microprocessor/microcontroller system and the peripheral chips in Television sets

 The I2C bus is comprised of two bus lines, namely; Serial Clock – SCL and Serial Data – SDA.

SCL line is responsible for generating synchronization clock pulses and SDA is responsible for

transmitting the serial data across devices.

 I2C bus is a shared bus system to which many number of I2C devices can be connected. Devices

connected to the I2C bus can act as either ‘Master’ device or ‘Slave’ device

 The ‘Master’ device is responsible for controlling the communication by initiating/terminating

data transfer, sending data and generating necessary synchronization clock pulses

 ‘Slave’ devices wait for the commands from the master and respond upon receiving the

commands

 ‘Master’ and ‘Slave’ devices can act as either transmitter or receiver

 Regardless whether a master is acting as transmitter or receiver, the synchronization clock signal

is generated by the ‘Master’ device only

 I2C supports multi masters on the same bus

The Typical Embedded System

@ McGraw-Hill Education

46

On-board Communication Interface - I2C

The Typical Embedded System

Master

(Microprocessor/

Controller)

SDA

SCLPort Pins

Slave 1

I2C Device

(Eg: Serial

EEPROM)

Slave 2

I2C Device

SDA

SCL

SDA

SCL

SDASCL

I2C Bus

Vcc

 2.2K

2.2K

@ McGraw-Hill Education

47

On-board Communication Interface - I2C

The sequence of operation for communicating with an I2C slave device is:

1. Master device pulls the clock line (SCL) of the bus to ‘HIGH’

2. Master device pulls the data line (SDA) ‘LOW’, when the SCL line is at logic ‘HIGH’ (This is the ‘Start’

condition for data transfer)

3. Master sends the address (7 bit or 10 bit wide) of the ‘Slave’ device to which it wants to communicate, over the

SDA line. Clock pulses are generated at the SCL line for synchronizing the bit reception by the slave device.

The MSB of the data is always transmitted first. The data in the bus is valid during the ‘HIGH’ period of the

clock signal

4. Master sends the Read or Write bit (Bit value = 1 Read Operation; Bit value = 0 Write Operation) according to

the requirement

5. Master waits for the acknowledgement bit from the slave device whose address is sent on the bus along with the

Read/Write operation command. Slave devices connected to the bus compares the address received with the

address assigned to them

6. The Slave device with the address requested by the master device responds by sending an acknowledge bit (Bit

value =1) over the SDA line

7. Upon receiving the acknowledge bit, master sends the 8bit data to the slave device over SDA line, if the

requested operation is ‘Write to device’. If the requested operation is ‘Read from device’, the slave device sends

data to the master over the SDA line

8. Master waits for the acknowledgement bit from the device upon byte transfer complete for a write operation and

sends an acknowledge bit to the slave device for a read operation

9. Master terminates the transfer by pulling the SDA line ‘HIGH’ when the clock line SCL is at logic ‘HIGH’

(Indicating the ‘STOP’ condition)

The Typical Embedded System

@ McGraw-Hill Education

48

On-board Communication Interface – Serial Peripheral Interface (SPI) Bus

The Serial Peripheral Interface Bus (SPI) is a synchronous bi-directional full duplex four

wire serial interface bus. The concept of SPI is introduced by Motorola. SPI is a single

master multi-slave system. It is possible to have a system where more than one SPI device

can be master, provided the condition only one master device is active at any given point

of time, is satisfied. SPI requires four signal lines for communication. They are:

Master Out Slave In (MOSI): Signal line carrying the data from master to slave device.

It is also known as Slave Input/Slave Data In (SI/SDI)

Master In Slave Out (MISO): Signal line carrying the data from slave to master device.

It is also known as Slave Output (SO/SDO)

Serial Clock (SCLK): Signal line carrying the clock signals

Slave Select (SS): Signal line for slave device select. It is an active low

signal

The Typical Embedded System

@ McGraw-Hill Education

49

On-board Communication Interface – Serial Peripheral Interface (SPI) Bus

The Typical Embedded System

Master

(Microprocessor/

Controller)

MISO

MOSI Slave 1

SPI Device

(Eg: Serial

EEPROM)

Slave 2

SPI Device

(Eg: LCD)

SCL

MOSI

SCLMOSI

SPI Bus

MISO

MISO

SCL

MOSI

MISO

SS\

SS\

SS1\

SS2\

SCL

@ McGraw-Hill Education

50

On-board Communication Interface – Serial Peripheral Interface (SPI) Bus

 The master device is responsible for generating the clock signal. Master device selects

the required slave device by asserting the corresponding slave device’s slave select

signal ‘LOW’. The data out line (MISO) of all the slave devices when not selected

floats at high impedance state

 The serial data transmission through SPI Bus is fully configurable. SPI devices

contain certain set of registers for holding these configurations. The Serial Peripheral

Control Register holds the various configuration parameters like master/slave

selection for the device, baudrate selection for communication, clock signal control

etc. The status register holds the status of various conditions for transmission and

reception.

 SPI works on the principle of ‘Shift Register’. The master and slave devices contain a

special shift register for the data to transmit or receive. The size of the shift register is

device dependent. Normally it is a multiple of 8. During transmission from the master

to slave, the data in the master’s shift register is shifted out to the MOSI pin and it

enters the shift register of the slave device through the MOSI pin of the slave device.

At the same time the shifted out data bit from the slave device’s shift register enters

the shift register of the master device through MISO pin

The Typical Embedded System

@ McGraw-Hill Education

51

On-board Communication Interface – Universal Asynchronous Receiver

Transmitter (UART)

 Universal Asynchronous Receiver Transmitter (UART) based data transmission is an

asynchronous form of serial data transmission

 The serial communication settings (Baudrate, No. of bits per byte, parity, No. of start

bits and stop bit and flow control) for both transmitter and receiver should be set as

identical

 The start and stop of communication is indicated through inserting special bits in the

data stream

 While sending a byte of data, a start bit is added first and a stop bit is added at the end

of the bit stream. The least significant bit of the data byte follows the start bit.

 The ‘Start’ bit informs the receiver that a data byte is about to arrive. The receiver

device starts polling its ‘receive line’ as per the baudrate settings

 If parity is enabled for communication, the UART of the transmitting device adds a

parity bit

 The UART of the receiving device calculates the parity of the bits received and

compares it with the received parity bit for error checking

 The UART of the receiving device discards the ‘Start’, ‘Stop’ and ‘Parity’ bit from the

received bit stream and converts the received serial bit data to a word

The Typical Embedded System

@ McGraw-Hill Education

52

On-board Communication Interface – Universal Asynchronous Receiver

Transmitter (UART)

The Typical Embedded System

RXD

UART UART

RXD

TXDTXD

TXD: Transmitter Line

RXD: Receiver Line

@ McGraw-Hill Education

53

On-board Communication Interface – 1-Wire Interface

 An asynchronous half-duplex communication protocol developed by Maxim Dallas

Semiconductor (http://www.maxim-ic.com)

 It is also known as Dallas 1-Wire® protocol. It makes use of only a single signal line

(wire) called DQ for communication and follows the master-slave communication

model

 The 1-Wire interface supports a single master and one or more slave devices on the

bus

 The 1-Wire is capable of carrying power to the slave device apart from carrying the

signals. Slave devices incorporate internal capacitor to generate power to operate the

device from the 1-Wire

 Every 1-Wire device contains a globally unique 64 bit identification number stored

within it. This unique identification number can be used for addressing individual

devices present in the bus in case there are multiple slave devices connected to the 1-

Wire bus

 The identifier has three parts: an 8 bit family code, a 48 bit serial number and an 8 bit

CRC computed from the first 56 bits

The Typical Embedded System

http://www.maxim-ic.com/

@ McGraw-Hill Education

54

On-board Communication Interface – 1-Wire Interface

The Typical Embedded System

Master

(Microprocessor/

Controller)

Port Pin
Slave 1

1-Wire Device

(Eg: DS2760 Battery

monitor IC)
GND

DQ

Vcc

4.7K

GND

Slave 2

1-Wire Device

(Eg: DS2431 1024

Bit EEPROM)
GND

DQ

@ McGraw-Hill Education

55

On-board Communication Interface – 1-Wire Interface

The sequence of operation for communicating with a 1-Wire slave

device is:

1. Master device sends a ‘Reset’ pulse on the 1-Wire bus.

2. Slave device(s) present on the bus respond with a ‘Presence’

pulse.

3. Master device sends a ROM Command (Net Address Command

followed by the 64 bit address of the device). This addresses the

slave device(s) to which it wants to initiate a communication

4. Master device sends a read/write function command to

read/write the internal memory or register of the slave device.

5. Master initiates a Read data /Write data from the device or to the

device

The Typical Embedded System

@ McGraw-Hill Education

56

On-board Communication Interface – 1-Wire Interface

 All communication over the 1-Wire bus is master initiated

 The communication over the 1-Wire bus is divided into timeslots of 60 microseconds

 The ‘Reset’ pulse occupies 8 time slots. For starting a communication, the master

asserts the reset pulse by pulling the 1-Wire bus ‘LOW’ for at least 8 time slots (480µs)

 If a ‘Slave’ device is present on the bus and is ready for communication it should

respond to the master with a ‘Presence’ pulse, within 60µs of the release of the ‘Reset’

pulse by the master

 The slave device(s) responds with a ‘Presence’ pulse by pulling the 1-Wire bus ‘LOW’

for a minimum of 1 time slot (60µs)

 For writing a bit value of 1 on the 1-Wire bus, the bus master pulls the bus for 1 to 15µs

and then releases the bus for the rest of the time slot

 A bit value of ‘0’ is written on the bus by master pulling the bus for a minimum of 1

time slot (60µs) and a maximum of 2 time slots (120µs)

 To Read a bit from the slave device, the master pulls the bus ‘LOW’ for 1 to 15µs

 If the slave wants to send a bit value ‘1’ in response to the read request from the slave, it

simply releases the bus for the rest of the time slot

 If the slave wants to send a bit value ‘0’, it pulls the bus ‘LOW’ for the rest of the time

slot.

The Typical Embedded System

@ McGraw-Hill Education

57

On-board Communication Interface – Parallel Interface

 Parallel interface is normally used for communicating with peripheral devices which are

memory mapped to the host of the system

 The host processor/controller of the embedded system contains a parallel bus and the

device which supports parallel bus can directly connect to this bus system

 The communication through the parallel bus is controlled by the control signal interface

between the device and the host

 The ‘Control Signals’ for communication includes ‘Read/Write’ signal and device select

signal

 The device normally contains a device select line and the device becomes active only

when this line is asserted by the host processor

 The direction of data transfer (Host to Device or Device to Host) can be controlled

through the control signal lines for ‘Read’ and ‘Write’

 Only the host processor has control over the ‘Read’ and ‘Write’ control signals

The Typical Embedded System

@ McGraw-Hill Education

58

On-board Communication Interface – Parallel Interface

The Typical Embedded System

Host

(Microprocessor/

Controller)

Peripheral Device

(Eg: ADC)

Address De-coder

Circuit

x: Data bus width

y: Address Bus width

Data Bus

Address Bus

D0 to

Dx-1

A0 to

Ay-1

Chip Select

CS\
WR\

RD\RD\
WR\

Control Signals

@ McGraw-Hill Education

59

External Communication Interface – RS-232 C & RS-485

 RS-232 C (Recommended Standard number 232, revision C from the Electronic

Industry Association) is a legacy, full duplex, wired, asynchronous serial

communication interface

 RS-232 extends the UART communication signals for external data communication.

 UART uses the standard TTL/CMOS logic (Logic ‘High’ corresponds to bit value 1

and Logic ‘LOW’ corresponds to bit value 0) for bit transmission whereas RS232 use

the EIA standard for bit transmission. As per EIA standard, a logic ‘0’ is represented

with voltage between +3 and +25V and a logic ‘1’ is represented with voltage between

-3 and -25V. In EIA standard, logic ‘0’ is known as ‘Space’ and logic ‘1’ as ‘Mark’.

 The RS232 interface define various handshaking and control signals for

communication apart from the ‘Transmit’ and ‘Receive’ signal lines for data

communication. RS-232 supports two different types of connectors, namely; DB-9: 9-

Pin connector and DB-25: 25-Pin connector.

The Typical Embedded System

1 5

6 9

1 13

14 25

DB-9
DB-25

@ McGraw-Hill Education

60

External Communication Interface – RS-232 C & RS-485

The Typical Embedded System

Pin Name

Pin No:

(For DB-9

Connector)

Description

TXD 3 Transmit Pin. Used for Transmitting Serial Data

RXD 2 Receive Pin. Used for Receiving serial Data

RTS 7 Request to send.

CTS 8 Clear To Send

DSR 6 Data Set ready

GND 5 Signal Ground

DCD 1 Data Carrier Detect

DTR 4 Data Terminal Ready

RI 9 Ring Indicator

@ McGraw-Hill Education

61

External Communication Interface – RS-232 C & RS-485

 RS-232 is a point-to-point communication interface and the devices involved in RS-232

communication are called ‘Data Terminal Equipment (DTE)’ and ‘Data Communication

Equipment (DCE)’

 If no data flow control is required, only TXD and RXD signal lines and ground line (GND) are

required for data transmission and reception. The RXD pin of DCE should be connected to the

TXD pin of DTE and vice versa for proper data transmission.

 If hardware data flow control is required for serial transmission, various control signal lines of

the RS-232 connection are used appropriately. The control signals are implemented mainly for

modem communication and some of them may be irrelevant for other type of devices

 The Request To Send (RTS) and Clear To Send (CTS) signals co-ordinate the communication

between DTE and DCE. Whenever the DTE has a data to send, it activates the RTS line and if the

DCE is ready to accept the data, it activates the CTS line

 The Data Terminal Ready (DTR) signal is activated by DTE when it is ready to accept data. The

Data Set Ready (DSR) is activated by DCE when it is ready for establishing a communication

link. DTR should be in the activated state before the activation of DSR

 The Data Carrier Detect (DCD) is used by the DCE to indicate the DTE that a good signal is

being received

 Ring Indicator (RI) is a modem specific signal line for indicating an incoming call on the

telephone line

The Typical Embedded System

@ McGraw-Hill Education

62

External Communication Interface – RS-232 C & RS-485

 As per the EIA standard RS-232 C supports baudrates up to 20Kbps (Upper limit 19.2Kbps) The

commonly used baudrates by devices are 300bps, 1200bps, 2400bps, 9600bps, 11.52Kbps and

19.2Kbps

 The maximum operating distance supported in RS-232 communication is 50 feet at the highest

supported baudrate.

 Embedded devices contain a UART for serial communication and they generate signal levels

conforming to TTL/CMOS logic. A level translator IC like MAX 232 from Maxim Dallas

semiconductor is used for converting the signal lines from the UART to RS-232 signal lines for

communication. On the receiving side the received data is converted back to digital logic level by

a converter IC. Converter chips contain converters for both transmitter and receiver

 RS-232 uses single ended data transfer and supports only point-to-point communication and not

suitable for multi-drop communication

 RS-422 is another serial interface standard from EIA for differential data communication. It

supports data rates up to 100Kbps and distance up to 400 ft

 RS-422 supports multi-drop communication with one transmitter device and receiver devices up

to 10

 RS-485 is the enhanced version of RS-422 and it supports multi-drop communication with up to

32 transmitting devices (drivers) and 32 receiving devices on the bus. The communication

between devices in the bus makes use of the ‘addressing’ mechanism to identify slave devices

The Typical Embedded System

@ McGraw-Hill Education

63

External Communication Interface – Universal Serial

Bus (USB)

 Universal Serial Bus (USB) is a wired high speed serial

bus for data communication

 The USB communication system follows a star topology

with a USB host at the center and one or more USB

peripheral devices/USB hosts connected to it

 A USB host can support connections up to 127, including

slave peripheral devices and other USB hosts

 USB transmits data in packet format. Each data packet has

a standard format. The USB communication is a host

initiated one

 The USB Host contains a host controller which is

responsible for controlling the data communication,

including establishing connectivity with USB slave devices,

packetizing and formatting the data packet. There are

different standards for implementing the USB Host Control

interface; namely Open Host Control Interface (OHCI) and

Universal Host Control Interface (UHCI)

The Typical Embedded System

USB Host

(Hub)

USB Host

(Hub)

Peripheral

Device 1

Peripheral

Device 2

Peripheral

Device 3

Peripheral

Device 4

Peripheral

Device 5

@ McGraw-Hill Education

64

External Communication Interface – Universal Serial Bus (USB)

 The Physical connection between a USB peripheral device and master device is

established with a USB cable

 The USB cable supports communication distance of up to 5 meters

 The USB standard uses two different types of connectors namely ‘Type A’ and ‘Type

B’ at the ends of the USB cable for connecting the USB peripheral device and host

device

 ‘Type A’ connector is used for upstream connection (connection with host) and ‘Type

B’ connector is used for downstream connection (connection with slave device)

The Typical Embedded System

Pin No: Pin Name Description

1 VBUS Carries power (5V)

2 D- Differential data carrier line

3 D+ Differential data carrier line

4 GND Ground signal line

@ McGraw-Hill Education

65

External Communication Interface – Universal Serial Bus (USB)

 Each USB device contains a Product ID (PID) and a Vendor ID (VID)

 The PID and VID are embedded into the USB chip by the USB device manufacturer

 The VID for a device is supplied by the USB standards forum

 PID and VID are essential for loading the drivers corresponding to a USB device for

communication

 USB supports four different types of data transfers, namely; Control, Bulk, Isochronous and

Interrupt

 Control transfer is used by USB system software to query, configure and issue commands to the

USB device

 Bulk transfer is used for sending a block of data to a device. Bulk transfer supports error

checking and correction. Transferring data to a printer is an example for bulk transfer.

 Isochronous data transfer is used for real time data communication. In Isochronous transfer,

data is transmitted as streams in real time. Isochronous transfer doesn’t support error checking

and re-transmission of data in case of any transmission loss

 Interrupt transfer is used for transferring small amount of data. Interrupt transfer mechanism

makes use of polling technique to see whether the USB device has any data to send

 The frequency of polling is determined by the USB device and it varies from 1 to 255

milliseconds. Devices like Mouse and Keyboard, which transmits fewer amounts of data, uses

Interrupt transfer.

The Typical Embedded System

@ McGraw-Hill Education

66

External Communication Interface – IEEE 1394 (Firewire)

 A wired, isochronous high speed serial communication bus. It is also known as High

Performance Serial Bus (HPSB)

 The research on 1394 was started by Apple Inc in 1985 and the standard for this was

coined by IEEE.

 The Apple Inc’s (www.apple.com) implementation of 1394 protocol is popularly

known as Firewire.

 i.LINK is the 1394 implementation from Sony Corporation (www.sony.net) and

Lynx is the implementation from Texas Instruments (www.ti.com)

 1394 supports peer-to-peer connection and point-to-multipoint communication allowing 63

devices to be connected on the bus in a tree topology

 The 1394 standard supports a data rate of 400 to 3200Mbits/Second

 IEEE 1394 uses differential data transfer and the interface cable supports 3 types of connectors,

namely; 4-pin connector, 6-pin connector (alpha connector) and 9 pin connector (beta

connector)

 The 6 and 9 pin connectors carry power also to support external devices. It can supply

unregulated power in the range of 24 to 30V (The Apple implementation is for battery operated

devices and it can supply a voltage in the range 9 to 12V)

The Typical Embedded System

http://www.apple.com/
http://www.sony.net/
http://www.ti.com/

@ McGraw-Hill Education

67

External Communication Interface – IEEE 1394 (Firewire)

The Typical Embedded System

Pin

Name

Pin No:

(4 Pin

Connecto

r)

Pin No:

(6 Pin

Connect

or)

Pin No:

(9 Pin

Connector)

Description

Power 1 8 Unregulated DC supply. 24 to 30V

Signal

Ground

2 6 Ground connection

TPB- 1 3 1 Differential Signal line for Signal Line B

TPB+ 2 4 2 Differential Signal line for Signal Line B

TPA- 3 5 3 Differential Signal line for Signal Line A

TPA+ 4 6 4 Differential Signal line for Signal Line A

TPA(S) 5

Shield for the differential signal line A. Normally

grounded

TPB(S) 9

Shield for the differential signal line B. Normally

grounded

NC 7 No connection

@ McGraw-Hill Education

68

External Communication Interface – IEEE 1394 (Firewire)

 The IEEE 1394 connector contains two differential data transfer lines

namely A and B

 The differential lines of A are connected to B (TPA+ to TPB+ and TPA- to

TPB-) and vice versa

 Unlike USB interface (Except USB OTG), IEEE 1394 doesn’t require a host

for communicating between devices. Example, a scanner can be directly

connected to a printer for printing

 The data rate supported by 1394 is far higher than the one supported by

USB2.0 interface

 1394 is a popular communication interface for connecting embedded devices

like ‘Digital Camera’, ‘Camcorder’, ‘Scanners’ with desktop Computers for

data transfer and storage

The Typical Embedded System

@ McGraw-Hill Education

69

External Communication Interface – Infrared (IrDA)

 A serial, half duplex, line of sight based wireless technology for data communication

between devices

 Infrared communication technique makes use of Infrared waves of the electromagnetic

spectrum for transmitting the data

 IrDA supports point-point and point-to-multipoint communication, provided all devices

involved in the communication are within the line of sight

 The typical communication range for IrDA lies in the range 10cm to 1 m

 IR supports data rates ranging from 9600bits/second to 16Mbps. Depending on the

speed of data transmission IR is classified into Serial IR (SIR), Medium IR (MIR), Fast

IR (FIR), Very Fast IR (VFIR) and Ultra Fast IR (UFIR)

 SIR supports transmission rates ranging from 9600bps to 115.2kbps. MIR supports data

rates of 0.576Mbps and 1.152Mbps. FIR supports data rates up to 4Mbps. VFIR is

designed to support high data rates up to 16Mbps. The UFIR specs are under

development and it is targeting a data rate up to 100Mbps

 IrDA communication involves a transmitter unit for transmitting the data over IR and a

receiver for receiving the data. Infrared Light Emitting Diode (LED) is used as the IR

source for transmitter and at the receiving end a photodiode is used as the receiver

The Typical Embedded System

@ McGraw-Hill Education

70

External Communication Interface – Bluetooth

 Low cost, low power, short range wireless technology for data and voice communication

 Bluetooth operates at 2.4GHz of the Radio Frequency spectrum and uses the Frequency Hopping

Spread Spectrum (FHSS) technique for communication.

 Bluetooth supports a theoretical maximum data rate of up to 1Mbps and a range of approximately

30 feet for data communication

 Bluetooth communication has two essential parts; a physical link part and a protocol part. The

physical link is responsible for the physical transmission of data between devices supporting

Bluetooth communication and protocol part is responsible for defining the rules of communication

 The physical link works on the Wireless principle making use of RF waves for communication

 Bluetooth enabled devices essentially contain a Bluetooth wireless radio for the transmission and

reception of data

 The rules governing the Bluetooth communication is implemented in the ‘Bluetooth protocol

stack’. The Bluetooth communication IC holds the stack

 Each Bluetooth device will have a 48 bit unique identification number. Bluetooth communication

follows packet based data transfer

 Bluetooth supports point-to-point (device to device) and point-to-multipoint (device to multiple

device broadcasting) wireless communication. The point-to-point communication follows the

master-slave relationship. A Bluetooth device can function as either master or slave

 A network formed with one Bluetooth device as master and more than one device as slaves is

known as Piconet

The Typical Embedded System

@ McGraw-Hill Education

71

External Communication Interface – Wi-Fi

 The popular wireless communication technique for networked communication of devices

 Wi-Fi follows the IEEE 802.11 standard

 Wi-Fi is intended for network communication and it supports Internet Protocol (IP) based

communication

 Wi-Fi based communications require an intermediate agent called Wi-Fi router/Wireless Access

point to manage the communications

 The Wi-Fi router is responsible for restricting the access to a network, assigning IP address to

devices on the network, routing data packets to the intended devices on the network

 Wi-Fi enabled devices contain a wireless adaptor for transmitting and receiving data in the form

of radio signals through an antenna

 Wi-Fi operates at 2.4GHZ or 5GHZ of radio spectrum and they co-exist with other ISM band

devices like Bluetooth

 A Wi-Fi network is identified with a Service Set Identifier (SSID). A Wi-Fi device can connect

to a network by selecting the SSID of the network and by providing the credentials if the

network is security enabled

 Wi-Fi networks implements different security mechanisms for authentication and data transfer

 Wireless Equivalency Protocol (WEP), Wireless Protected Access (WPA) etc are some of the

security mechanisms supported by Wi-Fi networks in data communication

The Typical Embedded System

@ McGraw-Hill Education

72

External Communication Interface – Wi-Fi

The Typical Embedded System

Device 1

Device 2 Device 3

Wi-Fi Router

@ McGraw-Hill Education

73

External Communication Interface – ZigBee

 Low power, low cost, wireless network communication protocol based on the IEEE

802.15.4-2006 standard

 ZigBee is targeted for low power, low data rate and secure applications for Wireless

Personal Area Networking (WPAN)

 The ZigBee specifications support a robust mesh network containing multiple nodes.

This networking strategy makes the network reliable by permitting messages to travel

through a number of different paths to get from one node to another.

 ZigBee operates worldwide at the unlicensed bands of Radio spectrum, mainly at

2.400 to 2.484 GHz, 902 to 928 MHz and 868.0 to 868.6 MHz

 ZigBee Supports an operating distance of up to 100 meters and a data rate of 20 to

250Kbps

 ZigBee is primarily targeting application areas like Home & Industrial Automation,

Energy Management, Home control/security, Medical/Patient tracking, Logistics &

Asset tracking and sensor networks & active RFID

 Automatic Meter Reading (AMR), smoke and detectors, wireless telemetry, HVAC

control, heating control, Lighting controls, Environmental controls, etc are examples

for applications which can make use of the ZigBee technology

The Typical Embedded System

@ McGraw-Hill Education

74

External Communication Interface – ZigBee

In the ZigBee terminology, each ZigBee device falls

under any one of the following ZigBee device category

ZigBee Coordinator (ZC)/Network Coordinator:

The ZigBee coordinator acts as the root of the ZigBee

network. The ZC is responsible for initiating the

ZigBee network and it has the capability to store

information about the network

ZigBee Router (ZR)/Full function Device (FFD):

Responsible for passing information from device to

another device or to another ZR

ZigBee End Device (ZED)/Reduced Function

Device (RFD): End device containing ZigBee

functionality for data communication. It can talk only

with a ZR or ZC and doesn’t have the capability to act

as a mediator for transferring data from one device to

another.

The Typical Embedded System

ZCZR

ZED

ZEDZED

ZED

ZED

ZR

@ McGraw-Hill Education

75

External Communication Interface – General Packet Radio Service

(GPRS)

 A communication technique for transferring data over a mobile communication network

like GSM

 Data is sent as packets. The transmitting device splits the data into several related packets.

At the receiving end the data is re-constructed by combining the received data packets

 GPRS supports a theoretical maximum transfer rate of 171.2kbps

 In GPRS communication, the radio channel is concurrently shared between several users

instead of dedicating a radio channel to a cell phone user. The GPRS communication

divides the channel into 8 timeslots and transmits data over the available channel

 GPRS supports Internet Protocol (IP), Point to Point Protocol (PPP) and X.25 protocols

for communication.

 GPRS is mainly used by mobile enabled embedded devices for data communication. The

device should support the necessary GPRS hardware like GPRS modem and GPRS radio

 GPRS is an old technology and it is being replaced by new generation data communication

techniques like EDGE, High Speed Downlink Packet Access (HSDPA) etc which offers

higher bandwidths for communication

The Typical Embedded System

@ McGraw-Hill Education

76

Embedded Firmware

 The control algorithm (Program instructions) and or the configuration

settings that an embedded system developer dumps into the code (Program)

memory of the embedded system

 The embedded firmware can be developed in various methods like

 Write the program in high level languages like Embedded C/C++ using an

Integrated Development Environment (The IDE will contain an editor, compiler,

linker, debugger, simulator etc. IDEs are different for different family of

processors/controllers.

 Write the program in Assembly Language using the Instructions Supported by

your application’s target processor/controller

The Typical Embedded System

@ McGraw-Hill Education

77

Other System Components – Reset Circuit

 The Reset circuit is essential to ensure that the

device is not operating at a voltage level where

the device is not guaranteed to operate, during

system power ON

 The Reset signal brings the internal registers and

the different hardware systems of the

processor/controller to a known state and starts

the firmware execution from the reset vector

(Normally from vector address 0x0000 for

conventional processors/controllers

 The reset vector can be relocated to an address

for processors/controllers supporting bootloader

 The reset signal can be either active high (The

processor undergoes reset when the reset pin of

the processor is at logic high) or active low (The

processor undergoes reset when the reset pin of

the processor is at logic low).

The Typical Embedded System

@ McGraw-Hill Education

78

Other System Components – Brown-out Protection Circuit

The Typical Embedded System

V
z

Reset Pulse

Active Low

R3

GND

DZ

R2

Vcc

R1

VBE

Q

Brown-out protection circuit prevents the

processor/controller from unexpected program

execution behavior when the supply voltage to the

processor/controller falls below a specified voltage

 The processor behavior may not be predictable if the

supply voltage falls below the recommended operating

voltage. It may lead to situations like data corruption

A brown-out protection circuit holds the

processor/controller in reset state, when the operating

voltage falls below the threshold, until it rises above

the threshold voltage

Certain processors/controllers support built in brown-

out protection circuit which monitors the supply

voltage internally

 If the processor/controller doesn’t integrate a built-in

brown-out protection circuit, the same can be

implemented using external passive circuits or

supervisor ICs

@ McGraw-Hill Education

79

Other System Components – Oscillator Unit

The Typical Embedded System

 A microprocessor/microcontroller is a digital device made up of digital

combinational and sequential circuits

 The instruction execution of a microprocessor/controller occurs in sync with a clock

signal

 The oscillator unit of the embedded system is responsible for generating the precise

clock for the processor

 Certain processors/controllers integrate a built-in oscillator unit and simply require

an external ceramic resonator/quartz crystal for producing the necessary clock

signals

 Certain processor/controller chips may not contain a built-in oscillator unit and

require the clock pulses to be generated and supplied externally

 Quartz crystal Oscillators are example for clock pulse generating devices

Quartz Crystal

Resonator C C

Y

Oscillator

Unit

Microcontroller Microprocessor

Oscillator

Unit

Clock Input Pin

C : Capacitor

Y : Resonator

Crystal Oscillator

@ McGraw-Hill Education

80

Other System Components – Real Time Clock (RTC)

 The system component responsible for keeping track of time. RTC holds information

like current time (In hour, minutes and seconds) in 12 hour /24 hour format, date, month,

year, day of the week etc and supplies timing reference to the system

 RTC is intended to function even in the absence of power. RTCs are available in the

form of Integrated Circuits from different semiconductor manufacturers like

Maxim/Dallas, ST Microelectronics etc

 The RTC chip contains a microchip for holding the time and date related information

and backup battery cell for functioning in the absence of power, in a single IC package

 The RTC chip is interfaced to the processor or controller of the embedded system

 For Operating System based embedded devices, a timing reference is essential for

synchronizing the operations of the OS kernel. The RTC can interrupt the OS kernel by

asserting the interrupt line of the processor/controller to which the RTC interrupt line is

connected

 The OS kernel identifies the interrupt in terms of the Interrupt Request (IRQ) number

generated by an interrupt controller

 One IRQ can be assigned to the RTC interrupt and the kernel can perform necessary

operations like system date time updation, managing software timers etc when an RTC

timer tick interrupt occurs

The Typical Embedded System

@ McGraw-Hill Education

81

Other System Components – Watch Dog Timer (WDT)

 A timer unit for monitoring the firmware execution

 Depending on the internal implementation, the watchdog timer increments or

decrements a free running counter with each clock pulse and generates a reset signal

to reset the processor if the count reaches zero for a down counting watchdog, or the

highest count value for an up counting watchdog

 If the watchdog counter is in the enabled state, the firmware can write a zero (for up

counting watchdog implementation) to it before starting the execution of a piece of

code (subroutine or portion of code which is susceptible to execution hang up) and the

watchdog will start counting. If the firmware execution doesn’t complete due to

malfunctioning, within the time required by the watchdog to reach the maximum

count, the counter will generate a reset pulse and this will reset the processor

 If the firmware execution completes before the expiration of the watchdog timer the

WDT can be stopped from action

 Most of the processors implement watchdog as a built-in component and provides

status register to control the watchdog timer (like enabling and disabling watchdog

functioning) and watchdog timer register for writing the count value. If the

processor/controller doesn’t contain a built in watchdog timer, the same can be

implemented using an external watchdog timer IC circuit.

The Typical Embedded System

@ McGraw-Hill Education

82

Other System Components – Watch Dog Timer (WDT)

The Typical Embedded System

Free Running

Counter

Watchdog

Microoprocessor/

Controller

Reset Pin

System Clock

Watchdog Reset

External Watch Dog Timer Unit Interfacing with Processor

